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0. INTRODUCTION 

 

Coastal regions are complex environments where geological, biological, and physical processes 
interact each other. About 50% of the European Union (EU) territory lies on shorelines, 27 member 
states have coastlines, nearly 50% of its citizens live within 50 km of the coast and 3.5 million EU 
inhabitants are directly employed in maritime activities. Despite of their importance, several coastal 
areas have been facing the persistent loss of land due to human interventions and/or natural causes. 

Long-term sustainability of coastal regions mostly depends on the maintenance of the fragile balance 
between sedimentation supply from rivers and erosional processes due to the waves, surges, and 
currents. Coastal plumes are therefore crucial pathways that need to be monitored and analysed. Their 
pathways and long-term evolution is a key challenge for a thorough understanding of what drives 
costal geomorphology. Inferring sediment availability and dynamics along shorelines constitutes 
therefore the primary need for coastal changes. 
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2. TRENDS FOR TOTAL SUSPENDED MATTER AND THEIR COASTAL 
GEOMORPHOLOGY IMPACT 

 

Long-term sustainability of coastal regions mostly depends on the maintenance of the fragile balance between 
sedimentation supply from rivers and sediment erosion/deposition from marine processes. Sediment-laden 
coastal plumes are therefore a precious and limited resource. Their pathways and long-term evolution is a key 
challenge for a thorough understanding of what drives costal morphodynamics. Inferring sediment availability 
along shorelines constitutes therefore the primary need for coastal changes.  

Estimating trends for Total Suspended Matter (TSM) is therefore crucial for quantifying natural and human-
made effects on coastal changes by means of remote sensing. Indeed, such an approach will allow us to 
diagnose sediment mass availability alongthe Adriatic Coasts, which can be envision as a “probe” to quantify 
the main issue that brings to coastal erosion, i.e., sediment starvation. The proposed research will help to 
minimize uncertainty of coastal region managements, also providing a better understanding of the coastal 
factors that affect trapping and dispersal of sediment. 

 

2.1. TSM data 

For our application, the water constituent we are interested in is the Total Suspended Matter (TSM), 
i.e. the concentration, measured in g m-3 (or, equivalently, in mg l-1), of suspended material in the 
water. The TSM is characterised by both its concentration and its granulometry. Typical values for 
TSM concentration in coastal waters lie in the range 10-100 g m-3, (D'Sa et al. 2007; Myint and 
Walker 2002).  

Calibration of an algorithm with regional datasets always poses the question of its generality or its 
regionality. TSM features (particle size distribution, concentration, refractive index i.e. composition) 
may vary greatly from region to region and even among different seasons in the same region. The 
non-uniqueness of the inverse RTE solution thus implies that assumptions and/or calibrations have 
to be made. Generally speaking, algorithms that are calibrated for a certain region give poor results 
if applied unmodified to other regions, where the TSM features could be quite different. This is of 
course especially true for regression based algorithms, i.e. for algorithm that don't even try to model 
the light-matter interaction in anyway, but that simply try to map observed reflectances to geophysical 
variables by means of some regression. Nevertheless, attempts have been made to derive general 
TSM algorithm, that could work for different sensors, different regions and different seasons: see 
(Nechad et al. 2010) for an example. Here we use remotely sensed TSM concentration field from the 
ESA Coastcolour project (http://www.coastcolour.org/), remapped over the Adriatic Sea. The reason 
for such a choice has been the quality and the ready availability of the dataset, from 2003 to 2012. As 

 

2.2. Methods 
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For TSM trend estimation we coupled the Mann-Kendall test and the Sens’s method, which are here 
applied to a de-seasonalized monthly time series as obtained from the X-11 technique. The dataset 
covers the time period spanning from 2003-01-04 to 2012-04-07, with a daily temporal resolution 
and a spatial resolution of 300 m. Because the seasonal component can mask small movements in the 
trend signal, we remove the seasonal signal from Coastcolour TSM dataset before determining the 
trend. We use is the X-11 seasonal adjustment methodology (Shiskin, 1978; Dagum, 1980), which is 
similar to that described in the framework of the X-12-ARIMA seasonal adjustment program of the 
U.S. Census Bureau (Findley et al., 1998), and that it was already used by Pezzulli et al., (2005) to 
remove the seasonal signal from Sea Surface Temperature data. The full description of the Mann-
Kendall test and the Sens’s method, applied to the de-seasonalized dataset is provided in the 
Deliverable D3.1.3 “Manual on the developed GBSatAdria SW”. 
 
2.3. Results 

We list below the main results of our analysis 

 

 

Figure 2.1. Daily TSM map over the Adriatic Sea (19 January 2003). High values of Total Suspended Matter  
concentration are observed off the Po River Delta and along the Central Italian coast. Daily maps a largely 
affected by cloud cover. 
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Figure 2.2. Monthly averaged TSM map over the Adriatic Sea (January 2003). The averaging process lowers 
the cloud cover issue, providing a better view of TSM concentration pattern in the whole Adriatic basin. 
However, some voids (i.e., missing values) are still present. 

 

 

Figure 2.3. TSM concentration map for the climatologic January. Missing pixels, still present in the monthly 
averaged maps (see Fig. 2.2), are here filled by using climatologic months (e.g., the average value of all 
Januaries, from 2003 to 2012). This technique will produce L4 monthly maps. 
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Figure 2.4. L4 monthly map of TSM concentration for January 2003, with no missing values. This L4 product 
can be used to evaluate statistical trends. 

 

 

Figure 2.5. L4 monthly map of TSM concentration for February 2008, with no missing values. This L4 product 
highlights the high values of TSM concentration off the Po River Delta due to sediment input of the river 
runoff, which is crucial for coastal geomorphological maintenance. 
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Figure 2.6. Statistical trend for TSM concentration over the period 2003-2012. We observe a general positive 
trend off the Po River Delta, due to sediment input of the river runoff, which confirms the coastal 
geomorphological maintenance in this particular area. However, the North and Central portion of the Italian 
coats is marked by a negative trend, which indicates sediment starvation and, I turn,  may relate to coastal 
erosion at large spatial and temporal scale. 

 

 

Figure 2.7. Statistical significance of the TSM trend. White pixels mark significant values of Chl concentration 
trend (Fig. 2.6). We note that the majority of coastal pixels are statistically significant. 
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