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1. INTRODUCTION 
 
Hydro-meteorological and other marine hazards triggered by meteorological events, affecting the 
Adriatic areas represent a dramatic threat which needs to be faced by enhancing monitoring and 
forecasting systems. In this respect, AdriaMORE project proposes increasing of the management 
capacity of the response to marine and coastal hazards in the Adriatic basin. 
AdriaMORE goal is to improve an existing integrated hydro-meteorological risk management 
platform focusing on the Adriatic coastal areas of Italy and Croatia capitalizing the major 
achievements of ADRIARadNet and CapRadNet projects. The latter, successfully completed under 
the IPA Adriatic CBC Programme, were devoted to create a cross-border infrastructure of observing 
and forecasting systems for building real-time risk scenarios for civil protection purpose.  
To this end, one of AdriaMORE’s specific objective is to develop a wave model operative in the 
WRFAdria model over the Adriatic coastal. This objective has been performed within the action 4.3 
of the WP4 of AdriaMORE project whose the main result is constituted by the Output entitled 
“Forecast of the newly implemented numerical weather prediction model improved by 
assimilating coastal monitoring data, coupled with the wave model.”. 
Two deliverables have contributed to the achievement of the above project Output:  
- deliverable 4.3.1 aimed at describing the meteorological model and wave model and how they are 
coupled; 
- deliverable 4.3.2 aimed at describing the operative coupled WRF-SWAN model.  
The first is described in another document while the deliverable 4.3.2, subject of this paper, has 
been organized as follows. 
In the chapter 2 the operative models chain is described, which is developed in collaboration with 
the Oceanography Laboratory group at the Science of Life and Environment 
Department (Università Politecnica delle Marche).  

In the chapter 3 some examples both of marine and meteorological fields that can be chosen and 
visualized. 

The references here used are listed in the chapter 4.  
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2. Description of the SWAN model operative into the WRFAdria model 

In this section we will give a detailed description of the model chain developed in collaboration 
with the Oceanography Laboratory group at the Science of Life and Environment 
Department (Università Politecnica delle Marche) . 

The Air-Sea Adriatic Forecasting System (hereafter ASA) is a numerical weather and 
ocean prediction system, that produces short term forecasts for Italy and the Adriatic 
Sea. 

Every day the system produces a +48h forecast starting from tomorrow at 00:00 UTC. 
The new bulletin is usually released between 14:00 and 15:00 UTC. 

The Air-Sea Adriatic forecasting system is a coupled atmospheric-wave model. 

The Weather Research and Forecasting model (WRF) is used for the atmosphere and 
the Simulating WAves Nearshore model (SWAN) for the waves. The two models are 
part of the Coupled Ocean-Atmosphere-Wave-Sediment Transport modeling system 
(COAWST) which is integrated by the Model Coupling Toolkit (MCT) to exchange 
data fields between models.  

2.1 Models  

The WRF (Skamarock et al., 2008) configuration for the Air -Sea Adriatic system has 
been chosen as the best compromise between computational efficiency and best 
forecast. The WRF is used in a nestdown configuration (Mazzarella et al., 2017): a 
mother domain at 15 km horizontal grid resolution covers large part of central Europe 
and a 3 km horizontal grid resolution covers Italy and the Adriatic Sea.  

http://www.italy-croatia.eu/
https://www.mmm.ucar.edu/weather-research-and-forecasting-model
http://swanmodel.sourceforge.net/
https://woodshole.er.usgs.gov/operations/modeling/COAWST
http://www.mcs.anl.gov/research/projects/mct
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Figure 1. Configuration of the domains. 

 

The model is initialized by NCEP analyses and forecast at 0.25° spatial reso lution. A 
3DVAR data assimilation of conventional data (Maiello et al., 2014) is used to 
improve the Initial Condition for the mother domain.  

The SWAN domain comprises the whole Adriatic Sea basin with 1 km horizontal grid 
resolution. The only open lateral  boundary is located at the strait of Otranto (grid 
points located into the Ionian Sea have been masked out).  

To warm-up the SWAN model a hotstart file from the previous run is used. The lateral 
open boundary conditions are provided from the operational fo recasting system 
SWAN-ITA (Cacciamani et al., 2012).  

The two models run simultaneously on a High Performance machine with 2 Intel® 
Xeon® CPU E5-2680 v2 @ 2.80GHz processors in hyperthreading configuration for a 
total of 40 thread siblings. WRF is the component which requires the higher 
computational resources, hence it has been assigned 30 siblings, whereas SWAN  has 
been assigned 2. 

 

 

http://www.italy-croatia.eu/
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Table 1. Summary of the computational resources assigned to each model.  

The time interval between coupling of models is  600 s. 

The table below summarizes the physical parameters exchanged between models by 
means of MCT: 

 
Table 2. Summary of the physical parameters exchanged between models.  

 
2.2 More about WRF  

WRF is a numerical weather prediction (NWP) and atmospheric simulation system 
designed for both research and operational applications. WRF is supported as a 
common tool for the university/research and operational communities by NCAR. The 
development of WRF has been a multi -agency effort among the National Center for 
Atmospheric Research’s (NCAR) Mesoscale and Microscale Meteorology (MMM) 
Division, the National Oceanic and Atmospheric Administration’s (NOAA) National 
Centers for Environmental Prediction (NCEP) and Earth System Research Laboratory 
(ESRL), the Department of Defense’s Air Force Weather Agency (AFWA) and Naval 
Research Laboratory (NRL), the Center for Analysis and Prediction of Storms (CAPS) 
at the University of Oklahoma, and the Federal Aviation Administration (FAA), with 
the participation of university scientists. WRF is maintained and supported as a 
community model to facilitate wide use internationally, for research, operations and 
teaching. 

The key features of the WRF–ARW model include: 

 Equations:  Fully compressible, Euler nonhydrostatic. Conservative for scalar 
variables. 

 Prognostic Variables:  Velocity components u and v in Cartesian coordinate, 
vertical velocity w, perturbation potential temperature, perturbation 
geopotential, and perturbation surface pressure of dry air.  

 Vertical Coordinate:  Terrain-following, dry hydrostatic-pressure, with vertical 
grid stretching permitted. Top of the model is a constant pressure surface.  

 Horizontal Grid: Arakawa C-grid staggering. 

http://www.italy-croatia.eu/
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 Time Integration: Time-split integration using a 2nd- or 3rd-order Runge-Kutta 
scheme with smaller time step for acoustic and gravity-wave modes. Variable 
time step capability.  

 Spatial Discretization:  2nd- to 6th-order advection options in horizontal and 
vertical. 

 Top Boundary Conditions:  Gravity wave absorbing (diffusion, Rayleigh 
damping, or implicit Rayleigh damping for vertical velocity). Constant pressure 
level at top boundary along a material surface. Rigid lid option. 

 Bottom Boundary Conditions:  Physical or free-slip. 
 Earth’s Rotation: Full Coriolis terms included.  
 Mapping to Sphere: Four map projections are supported for real -data 

simulation: polar stereographic, Lambert conformal, Mercator, and latitude -
longitude (allowing rotated pole). Curvature terms included.  

 Nesting: One-way interactive, two-way interactive, and moving nests. Multiple 
levels and integer ratios.  

 Nudging: Grid (analysis) and observation nudging capabilities available.  

Model physics: 

 Microphysics:  Schemes ranging from simplified physics suitable for idealized 
studies to sophisticated mixed-phase physics suitable for process studies and 
NWP. 

 Cumulus parameterizations:  Adjustment and mass-flux schemes for mesoscale 
modeling. 

 Surface physics: Multi-layer land surface models ranging from a simple thermal 
model to full vegetation and soil moisture models, includin g snow cover and sea 
ice. 

 Planetary boundary layer physics:  Turbulent kinetic energy prediction or non-
local scheme 

 Atmospheric radiation physics:  Longwave and shortwave schemes with multiple 
spectral bands and a simple shortwave scheme suitable for climate and weather 
applications. Cloud effects and surface fluxes are included.  

The WRF system is summarized in the following figure:  

http://www.italy-croatia.eu/
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Figure 2. Flow chart of the WRF-ARW model. 

 
 
2.3 More about SWAN 
 
SWAN is a third generation spectral wave model specifically designed for shallow 
water that solves the spectral density evolution equation. SWAN simulates wind wave 
generation and propagation in coastal waters and includes the processes of refraction, 
diffraction, shoaling, wave-wave interactions and dissipation due to whitecapping, 
wave breaking and bottom friction.  

The wave model solves the action balance equation:  

 
 

where  is the action density spectrum, σ is the relative radiant frequency 
(as observed in a frame moving with the ocean current), θ is direction normal to wave 
crest, x and y are coordinate space and t is time. The action density is defined as the 
wave energy density E divided by the relative frequency  and is solved 
because the action density is conserved in the presence of currents. The group 
velocities in x and y directions c x and cy in the second and third terms represent the 
propagation of the action density in geographic space, the fourth term represents 
changes in relative frequency due to variations in depth and currents with a 
propagation speed cσ in frequency space and the fifth term allows depth and current -
induced refraction with a speed c θ in directional space. The Sw term represents sources 
and sinks of wave energy density.  

2.4 More about the Model Coupling Toolkit (MCT) 
 

http://www.italy-croatia.eu/
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The MCT coupler allows the transmission and transformation of various distributed 
data between component models using a parallel coupled approach. MCT is a program 
written in Fortran90 and works with the MPI communication protocol. It is compiled 
as a set of libraries, which are linked to the model executable.  

At the initialization phase each model decomposes its own domain into sections (or 
segments) that are distributed to processors assigned for that component. Each grid 
section on each processors initial izes into MCT and the coupler compiles a global map 
to determine the distribution of model segments. Each segment also initializes an 
attribute vector that contains the fields to be exchanged and establishes a router to 
provide an exchange pathway between model components.  

During the run phase of the simulation the models will reach a predetermined 
syncronization point, fill the attribute vectors with data and use MCT send and receive 
commands to exchange fields.  

 

3. Examples of the operative products 

In the following, three examples of marine products that can be visualized at the link 
http://oceanlab.univpm.it/bulletin.html. 

 

Figure 3. Sea temperature field @ 01:00 of June 21 2019 over the selec ted area “Italy and 
Adriatic Sea”. 

http://www.italy-croatia.eu/
http://oceanlab.univpm.it/bulletin.html
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Figure 4. Wave height field @ 07:00 of June 22 2019 over the selected area “Italy and 
Adriatic Sea”. 

 

Figure 5. Sea level field @ 01:00 of June 22 2019 over the selected area “Italy and Adriatic 
Sea”. 

The other three following examples of meteorological products can be visualized at the link 
http://oceanlab.univpm.it/bulletin.html. 

 

http://www.italy-croatia.eu/
http://oceanlab.univpm.it/bulletin.html
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Figure 6. Accumulated precipitation (3h) @ 06:00 of June 23 2019 over the selected area 
“Italy and Adriatic Sea”.  

 

 

Figure 7. 2m air temperature @ 13:00 of June 22 2019 over the selected area “Italy and 
Adriatic Sea”. 

 

http://www.italy-croatia.eu/
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Figure 8. 10 m wind @ 19:00 of June 22 2019 over the selected area “Italy and Adriatic 
Sea”. 
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