

DIGLOGS Final Event

Digitalization of evacuation on passengers ships in the framework of DigLogs project

DigLogs | Dip. di Ingegneria e Architettura | UniTS

Evento Finale | Mestre (VE) | 01 Dicembre 2021

Mobile Security Pilot

During emergencies on board passenger ships, escape routes might be blocked due to fire or flooding. A mobile application, guiding passengers through the proper direction in the current situation, might reduce evacuation problems and congestions. Such a technology shall be based on the localization of passengers by means of an infrastructure sustained by a ship emergency grid and/or an independent source of power. Bluetooth beacons can be adopted, designing a net capable to localize the passenger through the connections to the nearest beacons.

Pilot Project Goals

MAIN GOAL: test the effectiveness of mobile technologies to increase safety/security on passenger vessels

- Focus on ship evacuation
- Development of mobile guidance system
 - Mobile app
 - Backend
- Reduction of evacuation time
- Test in challenging environment

LONG TERM: foster the deployment of the mobile technologies for onboard safety and security purposes

Pilot Project Detailed Design

Experimental Campaign (Device guidance)

LILYGO TTGO T-Wristband. Istruzioni fornite dall'app:

Direction (rotating)

Turn left/right after the door

Turn left or right, then come back

Proceed upstairs/downstairs

Destination reached

Wrong direction, come back WARNING! Wait the new signal

Experimental Campaign (GNV Bridge)

The system has been tested onboard with 37 persons sample population at Arsenale San Marco (Trieste) on 8th April 2021

GNV Bridge

ROROPAX built at **Visentini** Shipyard (RO)

LOA 203.28 m

LPP 194.20 m

B 25.60 m

D 15.00 m

Persone a bordo: 1000

The area has been equipped with sending and receiving Bluetooth beacons

- Still-made structures (signal reflection/shielding)
- Reduction of signal strength

Experimental Campaign (Trials)

The trials have been carried out considering multiple scenarios (open/blocked doors, with/without guidance) in random order

Experimental Campaign (Trials)

Pilot Project Results

Thanks to the smartbands guidance, a significant reduction of evacuation time has been observed for all the scenarios having one or more blocked escape routes

id	FD A	FD B	FD C	duration (s)		4:££ (°)	4:tt (0/)
				no guide	guide	diff (s)	diff (%)
01	open	open	open	100.0	105.0	-5.0	-5.0 %
02	open	open	blocked	114.5	81.0	33.5	29.3 %
03	open	blocked	open	87.0	78.0	9.0	10.3 %
04	open	blocked	blocked	124.0	104.0	20.0	16.1 %
05	blocked	open	open	96.0	75.0	21.0	21.9 %
06	blocked	open	blocked	106.0	103.0	3.0	2.8 %
07	blocked	blocked	open	130.0	74.0	56.0	43.1 %
mean				108.2	88.6	19.6	16.9 %

Pilot Project Results

A methodology has been developed to reproduce trials results with evacuaion simulations. The methodology can be used to evaluate system benefits if applied on other geometries (e.g. large passenger vessels)

SWOT Analysis

STRENGTHS

- Significant reduction of evacuation time in case of blocked escape routes
- Passenger localisation data can help to better manage ship evacuation
- Chosen system architecture and hardware assure **guidance** even in case of WiFi connection failure
- The system can be easily scaled

WEAKNESSES

- **Steel-made environment** impede the use of the compass and causes reflection of Bluetooth signals
- The current solution is **WiFi based** (hence, WiFi shall be available at least at the beginning of an emergency)
- Developed for **specific hardware** (smartbands)
- Smartbands battery capacity

OPPORTUNITIES

- Improved safety of passenger vessels (image return for shipping companies)
- Localisation data can be used for commercial purposes too
- Additional information/services for passengers

THREATS

- Possible **privacy issues** related to localisation data
- Too much reliance on technologies

Conclusions

- The plot project provided expected results (reduction of ship evacuation time through the application of mobile technology)
- For the test environment (restricted dimensions, short escape routes) obtained reductions are significant (average 16.9 %)
- Gained experience in the real environment will help to prevent and mitigate the reported issues in the future
- These encouraging results and the employment of localisation data for commercial purposes is expected to foster the adoption of mobile technologies to improve ship safety

Thank you!

DIGLOGS FINAL EVENT

Digitalization of evacuation on passengers ships in the framework of DigLogs project

Università degli Studi di Trieste – Dipartimento di Ingegneria e Architettura, ISDLab Luca Braidotti

- Via Alfonso Valerio 10, 34127 Trieste
- sbertagna@units.it / lbraidotti@units.it
- +39 040 558 3462 / 3406
- www.italy-croatia.eu/diglogs

