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Units was involved in the preparation and publication of a number of publications regarding the 

optimization of the energy flows within a photovoltaic based charging station for nautical 

applications. The optimization was performed to minimize the cost of the charged electricity as 

well as the related CO2 emissions. 

In particular, the studies included the forecasting of the power produced by photovoltaic 

generators, the prediction of the grid voltage, fault diagnosis methods for photovoltaic systems, 

and the development of a real time energy management systems for e-vehicles charging stations. 
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a b s t r a c t

Accurate short-term forecasting of photovoltaic (PV) power is indispensable for controlling and

designing smart energy management systems for microgrids. In this paper, different kinds of deep

learning neural networks (DLNN) for short-term output PV power forecasting have been developed and

compared: Long Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM), Gated Recurrent Unit (GRU),

Bidirectional GRU (BiGRU), One-Dimension Convolutional Neural Network (CNN1D), as well as other

hybrid configurations such as CNN1D-LSTM and CNN1D-GRU. A database of the PV power produced by the

microgrid installed at the University of Trieste (Italy) is used to train and comparatively test the neural

networks. The performance has been evaluated over four different time horizons (1 min, 5 min, 30 min

and 60 min), for one-Step and multi-step ahead. The results show that the investigated DLNNs provide

very good accuracy, particularly in the case of 1 min time horizon with one-step ahead (correlation

coefficient is close to 1), while for the case of multi-step ahead (up to 8 steps ahead) the results are found

to be acceptable (correlation coefficient ranges between 96.9% and 98%).

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past few years photovoltaic (PV) capacity worldwide

has rapidly grown. At the end of 2019 the cumulative installed

capacity exceeded 600 GW [1]. The integration of renewable en-

ergy, particularly PV in Micro-Grids (MGs) is becoming increasingly

popular (e.g. for supplying electricity to households, electrical

vehicle charging stations, etc.).

PV output forecasting has attracted, over the last two decades,

the attention of many researchers and academics, including the

authors [2], and is currently one of the hottest topics in the area of

renewable energy integration. Due to the intermittent nature of

solar energy, forecasting of the power produced by PV arrays is a

crucial task and remains a challenging issue. Accurate PV power

forecasting can be beneficial for grid planning and scheduling,

energy management (for example for MGs), minimizing the oper-

ational costs, safe operation, quality and for balancing supply and

demand. Generally, in MGs, very short-term forecasting (up to a

fewminutes) is mainly used for control purposes, while short-term

forecasting (up to a few hours) is generally used for scheduling the

energy flow between the loads, the sources and the battery storage.

In a large portion of the literature, PV power forecasting has

been considered as a regression problem (time series prediction). In

the early times of PV output forecasting, several approaches were

based on shallow Artificial Neural Networks (ANNs), presenting a

limited number of hidden layers. Recently, with the advent of su-

percomputers and the availably of a large amount of data collected

worldwide, researchers and academics are interested in the appli-

cation of Deep Learning (DL) to improve the forecasting accuracy.

The topic of PV forecasting in general has been reviewed by the

authors in a recent work [3].

Machine Learning (ML) algorithms do not scale well as

complexity increases exponentially with the size of the dataset. DL

algorithms have shown to be very powerful tools in time series

forecasting [4], including Long Short-Term Memory (LSTM), Gated

Recurrent Units (GRU), One-Dimensional Convolutional Neural

Networks (CNN1D) and other hybrid architectures. Deep Learning

Neural Networks (DLNNs) are able to automatically learn arbitrary

complex mappings from inputs to outputs and support multiple

inputs and outputs.
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To date, only a few forecasting methods based on DL have been

proposed for PV applications. The first application of deep learning

in solar power forecasting was introduced in Ref. [5], in which the

authors used encoders and LSTM. It was shown that Auto-LSTM

leads to good results compared to the well-known Multilayer Per-

ceptron network (MLP). De and coworkers presented a Recurrent

Neural Network (RNN) with a LSTM training algorithm to forecast

PV power [6]. They concluded that the quality of the results im-

proves with the size of the dataset, while the number of inputs has

a negligible effect.

A GRU network was used to improve the accuracy of short-time

PV power output forecasting [7], demonstrating a small but sensi-

ble positive effect with respect to other algorithms such as Back-

Propagation (BP), Support Vector Machine (SVM), AutoRegressive

Integrated Moving Average (ARIMA) and LSTM. In Ref. [8] the au-

thors used LSTM for forecasting PV output power. Different con-

figurations were evaluated by varying the number of epochs,

batches and inputs. The results indicated that a LSTM model with

three historical inputs (time Step) provides good results. In addi-

tion, the comparison with other models without memory, such as

BP, Multiple Linear Regression (MLR) and Bagged Regression tree

(BR), showed that the LSTM model performs better.

Weather classification was considered in Ref. [9] to forecast the

output power from a PV plant using LSTM. A one-day-ahead fore-

casting based on LSTM was developed, showing good results for

sunny days and performing better than other investigated methods

(Wavelet-NN, LS-SVM and BP). A Grey Relational Analysis (GRA)

and LSTM network were developed for hour-ahead PV power

generation forecasting [10]. The experimental results demonstrated

that the proposed model led to the smallest forecast error when

compared to other methods such as RNN, Radial Basis Function

(RBF) and BP. Finally, an LSTM-based model for four seasons was

developed. Generally, the model can accurately predict the 1-h

ahead PV power output [11].

In [12] the authors used CNN for short-term PV forecasting and

showed that sky images and PV output are crucial for obtaining

high accuracy. A hybrid model based on LSTM and attention

mechanism was proposed in Ref. [13] for short-term forecasting of

PV power (A-LSTM); the results demonstrated that this approach

leads to a better performance on 15 min predictions, compared to

other NNs. In Ref. [14], hybrid configurations combining CNN and

LSTM (CNN-LSTM and LSTM-CNN) were proposed, demonstrating

an improvement with respect to single-architecture LSTM and

CNN. A LSTM-RNN was developed for day-ahead PV power fore-

casting [15], demonstrating the superiority of such a DL-based

approach with respect to MLP, RBF, MLR, ARMA, ARIMA, SARIMA

and SVM [16,17].

Despite the efforts displayed above, a complete analysis and

application of DLNN algorithms for different time horizons and

steps ahead is still missing. The main objective of this work is

therefore to develop and evaluate the capability of a variety of

DLNN algorithms for one-Step and multi-step ahead forecasting of

PV output power at different time scales.

The present work differs from the previous literature in a

number of aspects: a) one-Step and multi-step PV power fore-

casting are presented and deeply analyzed; b) a broad range of

time-scale horizons are discussed (1 min, 5 min, 30 min and

60 min); c) different DLNNs have been developed, including LSTM,

GRU, BiLSTM, BiGRU, CNN-LSTM1D and CNN1D-GRU, some of which

have not been investigated before (e.g., BiLSTM, BiGRU and CNN1D-

GRU); d) exogenous inputs (such as air temperature, wind speed,

cloudy cover, and etc.) are not considered in this work e we focus

only on the historical powermeasurements within aMG; e)most of

the models presented in the literature are focusedmainly on hourly

or daily one-step ahead forecasting, and to the best of our knowl-

edge very short-term (few minutes ahead) forecasting is not well

addressed, despite the fact that it plays a very important role for

controlling applications of PV installations, including grid-

connected MGs. We expect that this work can help researchers to

acquire a clearer and more systematic picture of the applications of

different types of DLNNs for PV power forecasting, the challenging

issues, and the suitable configurations for real-world applications.

The paper is organized as follows: methods and materials are

presented in section 2, including the system description, the

database, the one-Step and multi-step ahead strategies and the

examined DLNNs. Results and discussion are reported in Section 3.

Section 4 provides a comparative study between one DLNN (LSTM)

and two other classical neural networks (Elman neural network

and Nonlinear autoregressive neural networks). Concluding re-

marks are given in the last section.

Fig. 1. Key components of the MG investigated in this work, including the 4 kW PV array and the data logger.
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2. Materials and methods

2.1. System description

Fig. 1 shows the elements of the MG investigated in this work. It

consists of a 4 kWp PV array, a 4.6 kV A inverter with storage (Li-ion

battery) capacity of 10 kWh, a charging electrical station and other

communication links [18]. PV array specifications are reported in

Table 1.

2.2. Database and normalization

The data were collected by a Sonnen data logger with a 1-min

time Step for the period January 1st to August 18th, 2020, for a

total of 337,545 samples. An example of the monitored PV output

power (Ppv) for a few days is plotted in Fig. 2a. Fig. 2b shows the

distribution of hourly Ppv for one day.

Considering only daytime values (Ppv > 0 W) and occasional

interruptions of the data logging, the database is reduced to 164,171

samples, and is divided into three parts: a subset of 70% is used for

training the neural networks, 15% for validation and the last 15% for

testing. First, the database is normalized using the following

equation:

ðyNÞ¼ ðy� yminÞ = ðymax � yminÞ (1)

where yN is the normalized value of Ppv, ymin and ymax are min and

max value of Ppv, respectively.

2.3. PV power forecasting strategies

2.3.1. Multi-input one-output (one-step ahead)

Let xt be the measured output PV power (samples). At time t, the

one-Step ahead forecasting consists in estimating the future value

of the PV output power expected at time (tþ1), based on the actual

and previously observed data; this can be formulated as:

bxtþ1 ¼ f ðxt ; xt�1;…; xt�kþ1Þ (2)

where t2fk; ::;N � 1g, fxt ; xt�1;…; xt�kþ1g are the actual and past

values of the time series, bxtþ1 is the forecasted value, f represents

the forecasting model, k is the embedded dimension of the data-

base (time series), and N is the size of the database. For example, in

the case of one Step-ahead with three inputs, the relationship be-

tween the input and the output (training matrix) can be formulated

as:

2

6666664

bx4
bx5
bx6
bx7
«

3

7777775
¼ f

2

6664

x1 x2 x3
x2 x3 x4
x3 x4 x5
x4 x5 x6
« « «

3

7775 (3)

2.3.2. Multi-input multi-output (multi-step ahead)

Using a similar notation, the multi-Step ahead forecasting

problem can be formulated as:

�
bxtþ1; bxtþ2;…; bxtþH

�
¼ f ðxt ; xt�1;…; xt�kþ1Þ (4)

where H is the forecast horizon, k is the number of samples, and

fbxtþ1; bxtþ2;…; bxtþHg is the forecasted time series. For example, in

the case of two steps-ahead (H ¼ 2) with five inputs (k ¼ 5), the

training matrix can be expressed as:

2

66664

bx6 bx7
bx7 bx8
bx8 bx9
« «

3

77775
¼ f

2

64

x1 x2 x3 x4 x5
x2 x3 x4 x5 x6
x3 x4 x5 x6 x7
« « « « «

3

75 (5)

Table 1

PV module specification.

PV Module Technology m-Si

Minimum Efficiency 16%

Nominal Power 4 kWp

Area 25 m2

Azimuth Angle þ30�

Tilt Angle 20�

Annual Yield 4400 kWh

Number of Strings 2

Power Factor [-0,9 þ 0,9]

Minimum Efficiency 95%

Fig. 2. a) Raw PV output power data (1e7 January 2020), b) Distribution of hourly produced PV power data (January 1, 2020).
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2.4. Deep learning neural networks

DLNNs are an improvement over NNs, consisting in the addition

of hidden layers e i.e. multiple processing layers to learn repre-

sentations of data [19]. The main DL algorithms are [22]: DCNN,

Deep Belief Networks (DBN), LSTM, Generative Adversarial Net-

works (GANs), Deep Convolutional GAN (DCGAN) and other hybrid

combinations. A short description of the main DLNNs in PV power

forecasting is given in the next subsections.

2.4.1. Long short-term memory (LSTM)

A LSTM network was first introduced in Ref. [20], and consists of

a RNN modified to include a cell, an input gate, output gate and

forget gate. A LSTM layer is able to learn long-term dependencies

and is mainly used for time series prediction. A simple architecture

consists of a set of LSTM cells and a dense output layer (See Fig. 3).

2.4.2. Bidirectional LSTM (BiLSTM)

First introduced in Ref. [21], it is a modified version of LSTM and

consists of two separate hidden layers. First, the forward hidden

sequence is computed, followed by the backward hidden sequence,

and finally the two are combined to calculate the output (see Fig. 4).

2.4.3. Gated Recurrent Unit (GRU)

First introduced in Ref. [22], a GRU is similar to LSTM but re-

quires a reduced number of parameters. These are learned through

the gating mechanism embedded in this approach. GRU is

computationally more efficient, needs less data to generalize, and

can learn long-terms dependencies.

2.4.4. Bidirectional GRU (BiGRU)

BiGRU is an improved version of GRU [21]. The architecture is

identical to that of a BiLSTM, in that it consists of two separate

hidden layers, but fewer parameters are needed.

2.4.5. Convolutional neural network (CNN)

CNN is a regularized version of the well-known Feed-forward

NNs. CNNs were firstly developed for 2D applications. It consists of

a set of layers (See Fig. 5): Conv2D, Max Pooling, Flatten and Fully

connected layer [19]. It can be also used for solving one dimensional

problems (CNN1D) such as time series classification and prediction.

2.4.6. CNN1D-LSTM

CNN1D-LSTM is the integration of CNN1D with LSTM: the two

configurations are arranged in cascade to obtain a hybrid archi-

tecture [23]. A simplified schematic of the one dimensional CNN1D-

LSTM used in this work is shown in Fig. 6. It comprises one con-

volutional, layer, oneMax Pooling layer, a Flatten layer, a LSTM layer

within n units (memory cells) and a fully dense layer (fully con-

nected layer with one output).

2.4.7. CNN1D-GRU

CNN1D-GRU is a hybrid architecture combining CNN1D with

GRU. The architecture is similar to the one reported in Fig. 6, except

for the fact that the LSTM layer is substituted by a GRU layer with n

units.

2.5. Evaluation metrics and programming language

To evaluate the performance of the developed DLNN-based

models, the common error metrics are used: correlation

Fig. 3. The single LSTM configuration: one hidden layer with n units and one dense

layer.

Fig. 4. The BiLSTM architecture of one hidden layer with n units and one dense layer.

Fig. 5. CNN1D architecture: one convolutional layer, max pooling layer, flatten layer,

and dense layer.

Fig. 6. Architecture of the CNN1D-LSTM used in this work.
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coefficient (r), root mean squared error (RMSE), mean absolute

error (MAE) and mean relative percent error (MAPE).

r¼
Pn

i¼1

��
xi � x

��
yi � y

��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

�
xi � xi

�2Pn
i¼1ðyi � yiÞ2

s (6)

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

 
Xn

i¼1

ðxi � yiÞ2
!vuut (7)

MAE¼1

n

Xn

i¼1

jxi � yij (8)

MAPE¼100%

n

Xn

i¼1

				
xi � yi

xi

				 (9)

where xi and yi are the measured and forecasted values, respec-

tively, and x and y are the average values of the measured and the

forecasted data, respectively.

Python language and the Keras library have been used to

develop and compare the DLNNs listed above, for PV output power

forecasting at different time horizons. The experiments have been

conducted on a laptop i5-2540M CPU CPU@2.60 GHz, 8 GB of DDR3

RAM.

3. Results and discussion

The performance of a number of DLNNs-based models devel-

oped for the prediction of the power produced by a PV array have

been evaluated for different time horizons. The models have been

developed using the Adam optimizer [24] together with the ReLU

(Rectified Linear Unit) [25] activation function.

With reference to the one Step-ahead prediction, the best ac-

curacy was obtained with a number of epochs equal to 100, a batch

size (BS) in the range (32e64), and an input time step in the range

(3e7).

With reference to Table 2, the correlation coefficient r is in the

range (98.5e99.2%) revealing a good correlation between the

measured and the forecasted powers for all the tested models.

LSTM, GRU, BiGRU, and BiLSTM-based models gave the best results

in terms of RMSE, MAPE and MAE, while CNN together with the

hybrid configurations performed worse.

Fig. 7a shows the box plots of the absolute errors for the

investigated DLNN-based models. The developed LSTM and GRU-

based models gave the lowest errors together with the smallest

variations around the mean value. Larger variations came from the

hybrid models. As an example, Fig. 7b shows the evolution of the

training and validation loss functions for the developed LSTM-

based model. The MSE converges after about 50 epochs to a value

close to zero.

With reference to Fig. 8a, the developed LSTM and the GRU-

based models gave the best results as the corresponding cumula-

tive distribution functions (CDF) are the closest to the measured

data. Moreover, Fig. 8b reveals that the correlation between the

power forecasted using these two methods is very strong.

Finally, Fig. 9 shows the mean and the standard deviations be-

tween the measured and the forecasted power for the LSTM model

during a period of about three days (2500 samples). The results

show a very good correspondence in the case of sunny periods, and

some spikes in the case of cloudy periods.

The next subsections describe five different tests that have been

carried out in order to show the influence of some parameters on

the forecasting accuracy and convergence time. The considered

parameters are: number of units, of inputs, of epochs, of layers, of

output steps, and database size.

For this purpose, only the developed LSTM-based model has

been investigated because of the good accuracy and simplicity of

implementation.

3.1. Test #1: different time horizons

In order to check the performance of the LSTM network devel-

oped for different time horizons, the original dataset of 164,171 1-

Table 2

Statistical errors for the forecasted PV powers.

Model and configuration RMSE (kW) MAPE (%) r (%) MAE (kW)

LSTM (3 � 100 � 1) 0.16 12.45 99.2 0.05

GRU (3 � 100 � 1) 0.17 8.00 99.0 0.07

BiLSTM (5 � 50 � 1) 0.17 13.96 99.0 0.07

BiGRU (5 � 50 � 1) 0.17 12.61 99.1 0.07

CNN1D (7 � 100 � 1) 0.21 45.55 99.0 0.12

CNN1D-LSTM (7 � 64 � 100 � 1) 0.31 127.09 98.5 0.22

CNN1D-GRU (7 � 64 � 100 � 1) 0.31 139.67 98.6 0.21

Fig. 7. a) Box plots of the absolute errors. b) Loss functions for the LSTM-based model.
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min samples has been divided into three databases. The first

database contains 32,834 5-min samples, the second 5472 30-min

samples, and the last 2736 sixty -minute samples. The results are

shown in Fig. 10. The correlation coefficient, that was 99.2% in the

case of 1-min samples, decreases from 97.5 to 91.3% as the duration

of the sample increases.

In this case, the LSTM architecture consists of 17 inputs, 100

units, and one output. The number of epochs was 100, and the

batch size was 64.

3.2. Test #2: stacked configuration

In this second test the number of hidden layersewhichwas one

in the previous experiments e and the configuration of the LSTM

architecture have been varied according to Table 3. While

considering different time horizons, the correlation coefficient r did

not change much, showing that the accuracy of the model only

mildly affected by the complexity of the model. On the other hand,

the new configurations require longer times for the training,

making themmore suitable for small databases (i.e. for longer time

horizons).

3.3. Test #3: time step

In order to evaluate the effect of the input size (i.e. the number

of historical power values) on the convergence time and accuracy of

the LSTM forecasters, the time Step has been varied in the range

(1e50) using the 5-min samples database. With reference to Fig. 11,

the lowest mean absolute error corresponds to a number of inputs

equal to 20, while the convergence time increases with the number

Fig. 8. a)Cumulative distribution functions. b) Correlation between the powers forecasted by the LSTM and the GRU-based models.

Fig. 9. Mean and standard deviations between the measured and the forecasted powers (developed LSTM model).
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of inputs. The correlation coefficient r is not much affected by the

number of inputs and varies in the range (96%e97%).

3.4. Test #4: number of units

In this experiment, the batch size, the epochs and the number of

inputs have been set to 64, 100 and 20 respectively, while the

number of units has been varied in the range [0e250]. As for the

previous case study, the models have been trained using the 5-min

database. The results shown in Fig. 12 reveal that the best corre-

lation coefficient corresponds to 100 units, while the convergence

time increases with the number of units. Also, the mean average

error is in the range [0.13e0.14 kW].

3.5. Test #5: multi-step forecasting

In this case, the LSTM architecture has been chosen to develop a

number of multi-Step forecasters. Seven forecasters were trained

using the 1-min database and can predict 2, 3, 4, 5, 6, 7 and 8 steps

ahead. A second set of four multi-step forecasters was developed

using the 60-min database; in this case, the predictions were per-

formed on 2, 3, 4 and 5 steps ahead. The configurations of the

forecasters together with the statistical errors are listed in Table 4.

For both the 1-min and 60-min databases, the best MAE, RMSE and

MAPE correspond to the first configuration (2-steps ahead), and the

convergence time increases with the number of inputs and outputs.

With reference to the 1-min database, Fig. 13 shows as an

Fig. 10. Forecasted and measured power for the LSTM-based forecasters developed for different time horizons (the forecasted power is depicted in red).

Table 3

Statistical errors and training times for different LSTM configurations.

Time horizon

5 min samples

Epoch ¼ 100, BS ¼ 64

Time horizon

30 min samples

Epoch ¼ 150, BS ¼ 32

Time horizon

60 min samples

Epoch ¼ 200, BS ¼ 32

Stacked-LSTM architecture r (%) MAE (kW) Training time (s) r (%) MAE (kW) Training time (s) r (%) MAE (kW) Training time (s)

1st architecture (7 � 100 � 50 � 1) 97.2 0.11 180 93.8 0.27 200 91.3 0.31 210

2nd architecture (5 � 100 � 50 � 25 � 1) 97.3 0.14 200 92.7 0.28 320 92.4 0.33 250

3rd architecture (9 � 50 � 50 � 1) 97.0 0.13 190 93.9 0.29 200 92.1 0.30 230
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example the comparison between the measured and the forecasted

power values in the case of configuration #3 (12 � 100 � 4) cor-

responding to a 4-steps ahead prediction. The correlation is quite

good in the case of sunny days, while the forecaster performs

slightly worse in the case of cloudy days.

With reference to the 60 min-database, Fig. 14 shows as an

example the comparison between the measured and the forecasted

power values in the case of configuration #1 (4 � 150 � 2). In this

case, the forecaster performance is not satisfactory.

3.6. Test #6: uncertainty quantification

Quantification of uncertainties associated with PV power fore-

casts is essential for optimal management and control of PV plants.

Here we use the Bootstrap Confidence Intervals (CI) [26] in order to

evaluate the uncertainty of the power forecasted by the LSTM that

has been developed using a 2% confidence power measurement.

The Boostrap CI procedure is summarized as follows [27]:

Step #1: Draw N samples from the original sample with

replacement (N ¼ 10,000)

Step #2: Find the median for each samples

Step #3: Arrange these sample medians in order of magnitude

Step #4: Calculate middle 95% of the medians in order to get a

95% confidence percentile

The procedure was implemented in Python using the percentile,

resample and accuracy_score functions considering 4500 samples of

the forecasted PV power. Fig. 15 shows the distribution function for

10,000 bootstrap resampling; the mean value is 1.73 kW.

Table 5 presents the calculated bootstrap CI (lower and upper

intervals) at different confidence percentiles (80%, 85%, 90% and

95%)

As shown in Table 5, for all confidence percentiles the mean

forecasted power (1.73 kW) is included within the confidence

interval.

As an example, Fig. 16 shows the calculated uncertainty quan-

tification interval (95% confidence percentile) for the forecasted

power. The variation of the forecasted PV power never exceeds the

confidence interval (shaded area).

With reference to the tests described in the previous sections,

we can conclude that:

✓ All the investigated DLNN-based forecasters are very promising;

LSTM, GRU, BiLSTM and BiGRU-based architectures work really

good especially for very short-term forecasting.

✓ A number of input time steps in the range (3e20) is enough to

give satisfactory results. However, when the number of time

steps is too high the forecasters become too complicated and the

training process takes too much time.

✓ In general, with 100 epochs the forecasters converge well.

However, in the case of small databases (e.g. the 60-min

Fig. 11. Mean absolute error and training time for the LSTM-based forecasters.

Fig. 12. Correlation coefficient and training time for the LSTM-based forecasters.

Table 4

Statistical errors and training times for different LSTM-based multi-Step forecasters.

Parameters: HL ¼ 1, NU ¼ 100 BS ¼ 64, Epoch ¼ 50

One minute-database

RMSE (kWh) MAPE (%) r (%) MAE (kW) Training time (s)

Configuration #1 (6 � 100 � 2) 0.20 21.47 98.0 0.08 390

Configuration #2 (9 � 100 � 3) 0.22 50.80 98.0 0.10 400

Configuration #3 (12 £ 100 £ 4) 0.23 41.94 98.0 0.09 450

Configuration #4 (3 � 100 � 3) 0.22 30.65 98.0 0.10 380

Configuration #5 (10 � 100 � 5) 0.22 30.65 98.0 0.10 520

Configuration #6 (12 � 100 � 6) 0.27 136.68 97.3 0.14 730

Configuration #7 (14 � 100 � 7) 0.28 128.79 97.1 0.15 850

Configuration #8 (16 � 100 � 8) 0.30 140.90 96.9 0.17 1050

Parameters: HL ¼ 1, NU ¼ 150 BS ¼ 64, Epoch ¼ 200

Sixty minutes database

Configuration #1 (4 £ 150 £ 2) 0.55 311.90 89.0 0.37 295

Configuration #2 (6 � 150 � 3) 0.58 460.32 88.6 0.41 350

Configuration #3 (8 � 150 � 4) 0.62 475.66 85.5 0.43 520

Configuration #4 (10 � 150 � 5) 0.63 537.60 84.3 0.43 700
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database), a higher number of epochs can improve the accuracy

of the forecasters.

✓ Increasing the batch size can significantly reduce the time

needed for the training process. Conversely, the accuracy is

negligibly affected by the batch size.

✓ The use of complicated architectures with many hidden layers

can increase the accuracy, although only moderately. The use of

many hidden layers is not recommended in the case of large

databases.

✓ The forecasters perform better in the case of small time horizons

(1 min). Moreover, the use of larger databases can significantly

increase the accuracy.

✓ In the case of one-Step ahead forecasting, the use of large da-

tabases gives satisfactory results even with the simplest DLNN

architectures. In the case of multi-step ahead forecasting, simple

LSTM architectures provide acceptable results for up to 8 steps

ahead only.

✓ In the case of particular configurations such as multi-input/

output, complicated architectures, large databases or high

number of layers, the running time can takemore than 1 h on an

average desktop workstation.

Fig. 13. LSTM-based multi-Step forecaster, configuration #3 (12 � 100 � 4). Forecasted and measured power.

Fig. 14. LSTM-based multi-Step forecaster, configuration #1 (4 � 150 � 2). Forecasted and measured power.

Fig. 15. The distribution function of the sample means.
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✓ The performance of the considered DLNN-based forecasters is

highly dependent on the weather conditions: the errors are

higher in the case of cloudy days.

✓ The LSTM model performs well for different confidence per-

centiles (80%, 85%, 90% and 95%), and the uncertainty quantifi-

cation determines the accuracy of thepredicted values.

4. Comparative study

This section aims at comparing one LSTM-based forecaster with

two classical time series prediction algorithms: the first is a

nonlinear autoregressive neural network (NAR) and the second an

Elman recurrent neural network (ENN). These types of neural

networks have been implemented in many programming lan-

guages including Matlab and Python, so they can be easily used to

forecast the output PV power.

In order to compare the performance of the LSTM, ENN and NAR

networks, a number of experiments have been carried out

considering different architectures (i.e. time steps, number of units,

hidden layers, activation functions and training algorithms) and

using the first dataset of 337,545 samples.

Fig. 17 shows the measured power together with the one pre-

dicted by the different techniques, and Fig. 18 depicts the correla-

tion between measured and forecasted power values. The trends

shown in the right part of the plot are similar, while a small dif-

ference with the measured data can be observed in the left part of

the plot. The correlation is good, being in the range (97%e99%) as

shown in Fig. 18.

From a quantitative point of view, the error metrics are listed in

Table 6.

Table 5 shows that the LSTM-based model performs better than

ENN and NAR neural networks in terms of both accuracy and

convergence time. This is mainly due to the architecture of the

LSTM network (forget gate) [20] and to the functions used in this

case, i.e the optimizer ‘Adam’ and the activation function ‘ReLU’. In

fact, the Adam optimizer [24] outperforms both the Levenberg-

Marquardt algorithm (used in the NAR neural network), and the

Gradient descent with momentum and adaptive learning (used in

the ELN network). Moreover, the activation function ‘ReLU‘ is faster

[28] than other activation functions (Tansig and Logsig).

Finally, the Dropout layer [29] used in the LSTM network helps

preventing overfitting.

Furthermore, from the point of view of implementation and

computation complexity the compared neural networks are all

simple, but LSTM can support a larger database than other classical

Table 5

CI for different confidence percentiles.

Confidence percentiles Bootstrap CI Mean (kW) Standard error
sffiffiffi
n

p

Lower (kW) Upper (kW) 1.73 0.0172

80% 1.724 1.756

85% 1.710 1.760

90% 1.706 1.762

95% 1.701 1.768

Fig. 16. Uncertainty quantification of the forecasted power.

Fig. 17. Measured versus forecasted powers - one day (850 samples).
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ML algorithms [30]. These results are not surprising if we consider

the fact that LSTM neural networks were designed in order to

overcome some of the drawbacks of classical RNNs such as long-

term dependencies [31] and the exploding gradient (vanishing

problem) [20].

5. Conclusions

In this paper, a variety of DLNNs has been developed for one-

Step and multi-step ahead forecasting of PV output power, over

different time horizons (1 min, 5 min, 30 min and 60 min). It has

Fig. 18. Correlations between measured and forecasted powers.

Table 6

Error metrics for the considered models.

Model r (%) MAE (kW) RMSE (kW) Training

Time (s)

Computation complexity

LSTM time steps ¼ 5

NU ¼ 100

BS ¼ 64

Training function ¼ Adam

Loss ¼ MSE

Activation function ¼ ReLu

99 0.054 0.16 160 s low

ENN time steps ¼ 5

NU ¼ 27

Activation function: Tansig

Training function: Traingdx

Loss: MSE

98 0.067 0.21 225 s low

NAR time steps ¼ 5

NU ¼ 45

Activation function: Logsig

Feedback delays ¼ 5

Training function: Trainlm

Loss: MSE

Feedback delays ¼ 3

97 0.10 0.25 328 s low
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been demonstrated that a simple DLNN architecture (such as LSTM

or GRU) can provide a very good accuracy (r ¼ 99%) for one step-

ahead forecasting. Good results are also obtained for multi-step

ahead forecasting (r ¼ 96.9%, e.g., for 8 steps ahead).

It should be pointed out that parameters such as batch size,

number of units, number of hidden layers, filters size, dropout, and

kernel size, should be also carefully selected; the value of these

parameters differs from one model to another. It has been verified

that a large database is necessary to achieve good results.

A comparative study confirmed the effectiveness of DLNNs (e.g.

LSTM) with respect to the traditional neural networks (such as ELN

and NAR). The bootstrap CI is used to quantify the uncertainty of the

forecasted PV power by the LSTM model. The model exhibits good

accuracy for different confidence percentiles.

The new advanced DLNN algorithms lead to acceptable accuracy

in the case of cloudy days, however further improvements are

needed for a fully satisfactory planning and management of energy

systems that include PV sources. Strategies for further enhancing

the forecasting accuracy in the case of cloudy days should account

for a combination of weather forecast data, sky images, clearness

index, etc.

Multi-Step forecasting of PV power also remains an open chal-

lenge. Strategies for further improving forecasting accuracy in this

case include testing other DLNNs (e.g., Seq2Seq learning) or

developing more advanced algorithms.

The performance of DLNNs tested in this work, however, are

satisfactory for what concerns the design of a smart energy man-

agement system for a microgrid that includes a PV generator, an

electrical storage, and an electrical vehicle charging station e such

as the one that has been used in this work for generating the

database for training and testing the neural networks. In general,

we expect rather simple DLNN architectures to be sufficient for

most real-world applications. Furthermore, other prediction inter-

val methods will be considered in the future for an in-depth anal-

ysis of the uncertainty associated with the produced solar PV

power. The techniques illustrated here for short-term forecasting

have the potential for being further adapted for medium- and long-

term forecasting as well.
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a b s t r a c t

In grid-connected Distributed Generation (DG) systems, with high-penetrations of renewable and

energy storage assets, the prediction of grid voltage and frequency plays an important role in enabling

the power quality support, the stabilization and monitoring of distribution networks. In this paper, a

method based on Artificial Neural Networks (ANNs) and Deep Recurrent Neural Networks (DRNN) has

been developed for very short-term prediction of grid voltage and frequency. For different time scales

(183ms, 1s, 10s, 60s), one-step and multistep ahead forecasters are developed to predict the future

behavior of grid parameters. This type of predictors can be used in distributed generation systems to

enhance the control performance, to prevent the occurrence of grid faults and to improve the power

systems stability. The data used to establish and validate the ANNs forecasters are provided from grid

connected battery storage system installed at the University of Manchester. The developed prediction

models have been validated experimentally via a dSPACE real-time controller. The obtained results

show that the ANNs forecasters are able to predict in real time the grid voltage and frequency with

satisfactory accuracy as the largest mean absolute percent error is 0.32%.

© 2021 Published by Elsevier Ltd.

1. Introduction

Renewable energy source-based Distributed Generation (DG)
systems are growing exponentially worldwide. In 2017 the share
of electricity generation capacity from renewables exceeded 60%
of the total; a 40% increase from 2002 [1]. Several factors con-
tribute to this significant increase: emissions targets and public
concerns related to climate change, depletion of conventional
energy resources, air pollution in cities, the fact that distributed
generators can be installed very quickly, and the decreasing cost
of electricity from photovoltaic (PV) and wind power [2].

Non-dispatchable renewable energy resources provide 10% of
the global electricity demand [1], and will play a more impor-
tant role in the near future. However, the intermittent nature
of renewable DG, which depend mainly on climatic conditions,
has negative impact on the power quality of distribution grids
especially in terms of frequency and voltage stability [3]. On
the other hand, with the emergence of Electric Vehicles (EVs)
interconnected to low voltage grid feeders, extra load is intro-
duced to distribution networks that yields to voltage deviations
at the point of coupling when charging EVs [4]. This new scenario

∗ Corresponding author.

E-mail address: apavan@units.it (A. Massi Pavan).

of smart grid brings technical challenges in matching genera-

tion and demand, improving the power quality and maintaining

the grid voltage and frequency at acceptable levels [5,6]. For

these reasons, regulators are today issuing new grid codes where

prosumers are called to participate in the regulation of both

frequency and voltage at the point of connection [7,8].

In this context, the capability to forecast the grid voltage and

frequency is of paramount importance for the monitoring, control

and protection of power systems. Predictions can be used as a

benchmark to determine whether there is a fault in the system,

and if there is any problem in the measurement or transmission

of signals [9]. Other applications are the optimization of the

state-of-charge (SOC) of energy storage systems [10], and the

optimal control of microgrid (MG) [11] and virtual power plants

[12]. In these cases, the order of magnitude for the forecasted

horizon varies from a few seconds to several hours. Another

application, where the desired forecasted horizon is shorter (a

few milliseconds, i.e. very short term forecasting), regards the

control of power systems when a delay in the communication

of the variables between different equipment can compromise

the stability of the system [13]. In this case, statistical modeling

techniques can overcome communication delays [14].

https://doi.org/10.1016/j.segan.2021.100502

2352-4677/© 2021 Published by Elsevier Ltd.
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Fig. 1. Watt-frequency and Volt-Var curves used to mitigate frequency and voltage oscillations.

Different approaches have been proposed in the literature for

the power-line frequency prediction. In [6] a weighted-nearest-

neighbor predictor is developed to forecast the frequency profile

for time horizon of one hour. A state–space model with Kalman

filter and the basic functions method are used in [9] for dynamic

forecast of grid frequency. The performance of proposed methods

were assessed in terms of root mean square error (RMSE) that

was about 0.002 Hz and 0.01 Hz for the sampling interval of 0.1

s and 1 s respectively. The authors in [15] have applied a cellular

computational extreme learning machine network for prediction

of bus frequencies in a power system. In [16], a feed-forward neu-

ral network is developed for hourly prediction of power system

frequency. The suggested model takes into account the depen-

dency of frequency on various parameters such as power demand,

available generation and wind power. Another approach based

on e-Support Vector Regression is proposed in [17] for dynamic

prediction of the samples of powerline frequency in a wide area

measurement system. The frequency prediction of synchronous

generators in a power system is performed in [18] using cel-

lular generalized neuron networks, where the performance are

checked based on real time tests.

On the other hand, a limited number of papers have addressed

the forecast problem of grid voltage. In [19] an approach for

short-term voltage prediction is proposed based on convolutional

neural network and empirical mode decomposition. The sug-

gested prediction method was validated for three time scales (1 h,

6 h and 12 h) and was compared with different forecast models.

A method to enhance real-time forecast of voltage by leveraging a

limited set of real-time measurement is proposed in [20]. A feed-

forward neural network approach is proposed in [21] for real time

voltage estimation in low voltage distribution grid. The authors

have demonstrated that the performance of the ANN model are

not sensitive to the number of hidden nodes as well as to the level

of PV generation. A local estimator based on feed-forward ANN is

also presented in [22] for real-time estimation of voltage profile

in distribution system. Several tests have been performed for

low /medium voltage feeders to check the accuracy of proposed

estimator, which increases with the number of measurements

available at its input.

The novelty of the present study regards the capability to

simultaneously predict in real-time both the voltage and the

frequency of a low-voltage feeder. Starting from the preliminary

work described in [23], eight (four for the frequency and four

for the voltage) one-step ahead forecasters have been developed

with four different time horizons: 183 ms, 1 s, 10 s, and 60

s. Another major contribution of this work is the introduction

of multi-step forecasters that can predict the grid voltage and

frequency up to three steps ahead, and with three different time

horizons: 183 ms, 1 s, and 10 s. Moreover, the simulation and

comparisons between different types of ANNs (FFNN, RBF, ENN

and LSTM) based forecasters is carried out in this paper.

The paper is organized as follows: the problem related to the

forecast of the grid quantities is defined in the next section, while

the main contributions are summarized in Section 3. Section 4

describes the ANN-based forecasters developed in this study.

Section 5 presents the results, while Section 6 deals with the

conclusions.

2. Problem statement

The grid voltage and frequency are important parameters

commonly used in the control schemes and monitoring systems

of DG. Thus, Perform an accurate forecast of grid quantities can

significantly enhance the power quality and grid stability [6].

The one-step ahead forecast of voltage and frequency allows

the compensation of the measurement delay and consequently

the improvement of dynamical performance of control systems

like VF-droop control of microgrid [24], Frequency-Watt Control

(FWC) [25] and Volt-VAr Control (VVC) of smart inverters [3].

The Fig. 1 illustrates the FWC and VVC functions that are usually

incorporated in grid connected smart inverters. The active and

reactive powers can be controlled according to the grid frequency

and voltage at the point of coupling, respectively [3,25]. Hence,

the multi-step ahead prediction will give information on future

trajectory of grid frequency and voltage that helps to make

decision on the suitable control actions to regulate the active and

reactive powers. On the other hand, the multi-step ahead pre-

diction of grid voltage and frequency can be used in monitoring

systems to prevent and mitigate undesirables effects of grid faults

(like three phase voltage unbalance, voltage flicker, frequency

fluctuation, etc.).

3. Main contributions

In general, forecasting methods based on machine learning use

databases (i.e. time series, in this work voltages and frequencies)

in order to produce predictions for a given horizon. In the recent

years, classical and deep neural networks like radial basis func-

tion neural networks [26] and long short-term memory (LSTM)

[27] have been widely used for the forecasting of time series data.

This is due to the ability of ANNs to capture sharp changes in the

input–output relationship [28]. Without need for mathematical

development, ANNs have shown higher accuracy than classical

stochastic approaches such as autoregressive moving average

and autoregressive integrated moving average, Kalman filter and

other statistical methods [2,28,29].

In this work, a number of ANNs based forecast models such

as Feed-Forward Neural Networks (FFNNs), Radial Basis Function

2
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Fig. 2. One thousand seconds of measured frequency and line-to-line voltage data from the grid, sampled every one second.

Fig. 3. One-step ahead ANN-based forecast models adopted for: (a) Frequency, (b) Voltage.

Neural Network (RBFN), LSTM, and online-trained Elman Neu-

ral Networks (ENNs) are developed to predict the grid voltage

and frequency for four timescales (183 ms, 1 s, 10 s, 60 s). A

comparative study between the FFNNs, RBFNs and LSTMs based

forecasters, trained using an historical dataset, is conducted for

both one-step and multistep ahead predictions. On the other

hand, the ENNs-models established in Simulink environment are

simulated in real-time, in addition to the FFNNs forecasters, using

a dSPACE controller to enable online forecasting of grid quantities.

In this case, the adaptation of ENNs parameters is performed

in real-time without prior knowledge on voltage and frequency

profiles. The chosen ANNs have simple structures and can be

easily implemented in real time power systems.

4. Forecasters implementation

4.1. Database

The data used for the training and validation of voltage and

frequency forecasters are recorded at a low voltage (of 400 V)

grid connection. The data come from the point of common cou-

pling with the grid of a battery storage system installed at the

University of Manchester [23,30]. As an example, Fig. 2 shows

part (one thousand seconds) of the measured frequency and line-

to-line voltage (voltage between phases one and two) measured

on the 29th of June 2018 from 2.43 pm. The data used for the

ANNs training was logged every 183 ms, 1 s, 10 s and 60 s in the

3
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Fig. 4. Structure of the proposed three-step ahead forecaster for: (a) voltage, (b) frequency.

dSPACE controller. The number of samples for the 183 ms, 1 s,

10 s and 60 s time scales are 21,858, 15,000, 10,001 and 10,001

respectively.

4.2. One-step ahead forecasting

At the time instant, t, the one-step ahead forecaster estimates

the future value of y expected at (t+1) based on the actual and

previously observed data [31]:

ŷt+1 = f (yt , yt−1, . . . , yt−d+1) (1)

where t ∈ {d, . . . ,N − 1}, {yt , yt−1, . . . , yt−d+1} are the actual

and past values of the time series, ŷt+1 is the forecasted value,

f represents the forecasting model, d is the embedded dimension

of the database (time series), and N is the size of the database.

4.2.1. Offline trained ANNs

The developed ANNs-based forecasters (FFNNs, RBFNs and

LSTM) are trained offline using a historical dataset logged for

different time scales. During the offline training phase, the net-

works learn from the input-target examples in the database and

adapt theirs parameters accordingly. The general form of ANN

models proposed for frequency and voltage magnitude prediction

is given Fig. 3. The adopted topology enables the prediction of the

future value for the given timescale based on only the current

observation of grid frequency or voltage.

To enhance the forecast accuracy and to avoid the overfit-

ting problem, we have established a separate ANN forecaster

for each phase-to-phase voltage (see Fig. 3.b). The topology of

the developed FFNNs is based on a single hidden layer with

minimal number of nodes (between 4 and 6). The algorithms

of Levenberg–Marquardt (trainlm) and Bayesian regularization

(trainbr) are used for the offline training of the ANNs (FFNNs

and RBFNs). For the development of each network, the dataset

has been randomly divided into three subsets using the function

Fig. 5. Test facility at Manchester University [30].

‘‘dividerand’’ available in MATLAB (Ver 2013a). The first subset has

been used for the training, the second for the validation, and the

third for the preliminary testing of the forecasters. LSTMs fore-

casters are developed with Python language using Keras library

functions [32].

4.2.2. Online trained ENN

As suggested in [23], recurrent ENNs can be used for the

one-step ahead prediction of the grid voltage and frequency for

different timescales. These neural predictors are based on an

online adjustment of the weights so that the forecast capability

is adapted to any change in the system dynamic. The update of

the ENN weights is performed using the Adaptive Interaction Rule

(AIR) described in [33,34].

4
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Fig. 6. Real time test of voltage and frequency forecasters.

Fig. 7. Real-time simulation for the one-step ahead forecasters with four time horizons (183 ms, 1 s, 10 s, and 60 s, period: March).

4.3. Multi-step ahead forecasting

Multi-step ahead forecasting is more complicated than the
one-step forecasting because of the possibility of accumulation of
errors, a reduced accuracy, and an increased uncertainty [31,35].
For this reason, in the last few decades one-step ahead forecasting
has been the most investigated area, but recently, due to advances
achieved in computing and data analysis, multi-step forecasting
are become more and more viable.

Different strategies for multi-step forecasting have been pre-
sented in the literature including the multi-output strategy, re-
cursive method, and direct strategy [35]. A multi-output forecast-
ing strategy has been used in this work in order to improve the
precision of the network. According to the multi-output strategy,

the multi-step ahead prediction problem can be formulated as
[35]:
{

ŷt+1, ŷt+2, . . . , ŷt+H

}

= f (yt , yt−1, . . . , yt−d+1) (2)

where H is the forecast horizon, d is the number of samples, and
{

ŷt+1, ŷt+2, . . . , ŷt+H

}

is the forecasted time series. Three-step
ahead forecasters have been developed for the 183 ms, 1 s, and
10 s time horizons. A two-step ahead predictors has been used
for the 60 s horizon.

4.3.1. Offline trained ANN
The three-step ahead ANN forecasters (FFNN, RBFN, and LSTM)

are able to determine the next three values of voltage and fre-
quency that correspond to the instants t+1, t+2, t+3 based on
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the actual observation at the time instant t. The 60 s forecaster

estimates the future two steps of the grid quantities. The general

structure of the multistep ahead prediction model of line-to-line

voltage (V1−2) is presented in Fig. 4.a.

4.3.2. Online trained ENN

As an example, with reference to the frequency, the adaptive

ENN-based multi-output forecaster used in this work is shown in

Fig. 4.b. This can be described by [34]:
⎧
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where l ∈ {1, 2, 3}, p and r ∈ {1, 2, . . . ,Nh}, Nh is the number

of hidden nodes, h(1), h
(2)
p , h

(3)

l are the input, the pth hidden

node output and the lth network output respectively. S
(2)
p and

S
(3)

l are the activation functions of the hidden and output neurons

respectively. oh1p and oopl are the weights of the network.

Hence, the following AIRs have been used for the online adap-

tation of the ENN weights [33,34]:
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where αl is the learning rate, and el is the forecast error for the

lth output neuron. The prediction errors that has to be minimized

at each iteration are defined as:
⎧

⎪

⎨

⎪

⎩

e1 (k) = f̂ (k + 1) − f (k + 1)

e2 (k) = f̂ (k + 2) − f (k + 2)

e3 (k) = f̂ (k + 3) − f (k + 3)

(5)

Once the learning sample is presented at the ENN input, the

network weights vectors are updated at the same instant in such

a manner that the output errors el can be reduced.

5. Results and discussion

In this work, two comparative studies are performed. The

first one is done for the offline trained FFNNs, RBFNs and LSTMs

based forecasters. The goal is to understand the best option to

be implemented on the dSPACE controller. The second study is

realized experimentally using a dSPACE platform to perform real-

time prediction of grid quantities using ENNs and offline-trained

ANNs-models.

5.1. Simulation results

The offline-trained forecasters presented in the previous sec-

tion have been simulated and compared for different timescales

(183 ms, 1 s, 10 s, 60 s). To check the performance and the

generalization ability of developed FFNNs, RBFNs and LSTMs, a

dataset that has not be seen during the offline training phase

is used to test them. Table 1 summarizes the results of one-

step and multistep forecasting using the test data for different

timescales. It can be seen that the predicted values of voltage and

frequency have a good agreement with the measured values for

all cases (see Table 1). Nevertheless, it can be noted that the one-

step and multistep forecast accuracy decreases for a long time

scale of 60 s. Besides, the frequency prediction performance are

better than those of the voltage forecasting. The voltage errors

(i.e. RMSE) obtained for different time horizons arrange between

0.6 V-1.9 V, whereas the frequency errors (RMSE) are less than

0.056 Hz. It can be seen from Table 1 that the results of the FFNNs

models are very similar to those obtained by RBFNs with slight

differences. The performance of the LSTMs-based forecasters get

worse when the timescale increases. This is because this type of

DRNN requires a large dataset in order to give accurate results.

For example, in the case of one-step and three-step frequency

prediction, with the time scales (183 ms and 1 s), the values of

correlation coefficients (R) are close to one and statistical errors

(RMSE and MAE) are less than 10−3, obtained by the three types

of ANNs. The results of FFNNs and RBFNs are identical in these

two cases. Besides, in the case of one-step forecast of voltage, the

FFNN models have given the best values of error metrics for the

four time scales. On the other hand, the 183 ms, 10 s and 60 s

voltage forecasters based on RBFNs offer better performance than

the FFNNs and LSTMs for the case of multi-step ahead prediction.

In addition, it can be seen that the LSTMs models have given

the worst results for 60 s one-step and 2-step ahead voltage

forecast. The accuracy of the two-step ahead 60 s-forecasters is

satisfactory, but it can be improved by taking into account more

measurement variables (like voltage and frequency errors, . . . ) at

the ANNs input.

In term of complexity, the adopted FFNNs topology (hidden

nodes: less than 6) is much simpler than those of the RBFNs

(hidden nodes: more than 10) and LSTMs (150 cells, batch size

= 64, and 1 dense layer) forecasters. Furthermore, it has be seen

that LSTMs have not given precise results, that means that this

type of neural networks, based on deep learning, is not very

suitable for this application. For these reason and as satisfactory

results are obtained with simple FFNN models, it have been

chosen for simulation in real time using dSPACE controller. Hence,

the Simulink blocks of the developed FFNN models are generated

using the Matlab command ‘‘gensim’’ to perform their real valida-

tion. The ENNs forecasters described in the previous section are

also constructed in the Simulink environment based on Eq. (3)

and using the AIRs. The main features of the developed FFNNs

and ENNs prediction models are given in Tables 2 and 3.

5.2. Experimental results

The developed FFNNs and ENNs based forecast models have

been implemented in the dSPACE real-time control system that

records the measured frequency and three-phase line-to-line

voltages of grid feeder (415 V–50 Hz). The photograph of Fig. 5

gives a general description of grid connected storage system

installed at the University of Manchester, where the real time test

is performed.

In order to check the prediction accuracy of the developed

forecasters, we performed three experimental tests in three dif-

ferent periods:

• The first test was performed during a weekend, only for

the one-step ahead forecasters. The record of measured and

forecasted data started at 7:04pm of 1th March 2019;

• For the second experiment, we recorded for more than 2 h

and we started the data logging at 4:04pm of the 26th April

2019. This test was to validate both the one-step and the

multi-step ahead ANN predictors;

• The last experiment lasted 540 min, starting at 9:15 am of

the 13th of May 2019.

All data is considered in this section to evaluate the performance

of the forecasters. Fig. 6 gives a general description of the experi-

mental validation method. Tables 4–6 summarize the forecasters

performance presenting different metrics such as R, RMSE, and

MAPE. Bold numbers indicate the best results for each time scale.
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Fig. 8. Real-time simulation for the one-step ahead forecasters with four time horizons (183 ms, 1 s, 10 s, and 60 s, period: April).

Fig. 9. Real-time simulation for the one-step ahead forecasters with four time horizons (183 ms, 1 s, 10 s, and 60 s, period: May).
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Table 1

Errors metrics calculated for the test dataset with offline-trained ANNs predictors.

Parameter

Forecaster

One-step ahead prediction Multi-step ahead prediction

R RMSE MAE MAPE (%) R RMSE MAE MAPE (%)

Voltage V1-2

(timescale 183 ms)

FFNN 0.9500 0.6002 V 0.3945 V 0.0950 0.9546 0.6977 V 0.5477 V 0.1307

3-step

ahead

RBFN 0.9500 0.6689 V 0.5144 V 0.1241 0.9607 0.6754 V 0.5350 V 0.1286

LSTM 0.9481 0.7513 V 0.6533 V 0.1849 0.9333 0.7564 V 0.5917 V 0.1425

Frequency

(timescale 183 ms)

FFNN 0.999 0.0020 Hz 0.0016 Hz 0.0031 0.9969 0.0023 Hz 0.0018 Hz 0. 0036

RBFN 0.999 0.0020 Hz 0.0016 Hz 0.0031 0.9969 0.0023 Hz 0.0018 Hz 0.0036

LSTM 0.999 0.0021 Hz 0.0019 Hz 0.0024 0.9960 0.0036 Hz 0.0023 Hz 0.0038

Voltage V1-2

(timescale 1 s)

FFNN 0.9428 0.7484 V 0.5988 V 0.1443 0.9196 0.6980 V 0.5289 V 0.1260

RBFN 0.9424 0.7689 V 0.6306 V 0.1520 0.9192 0.7062 V 0.5339 V 0.1283

LSTM 0.9325 0.8876 V 0.7753 V 0.277 0.9187 0.8024 V 0.6239 V 0.1345

Frequency

(timescale 1 s)

FFNN 0.9975 0.0035 Hz 0.0028 Hz 0.0055 0.9938 0.0055 Hz 0.0043 Hz 0.0085

RBFN 0.9975 0.0035 Hz 0.0028 Hz 0.0055 0.9938 0.0055 Hz 0.0043 Hz 0.0085

LSTM 0.9974 0.0039 Hz 0.0031 Hz 0.0033 0.9937 0.0060 Hz 0.0046 Hz 0.0092

Voltage V1-2

(timescale 10 s)

FFNN 0.9436 0.7270 V 0.5287 V 0.1274 0.9407 0.8414 V 0.6333 V 0.1528

RBFN 0.9437 0.7495 V 0.5880 V 0.1418 0.9438 0.8229 V 0.6214 V 0.1499

LSTM 0.9336 0.8046 V 0.6987 V 0.2185 0.8584 1.0292 V 0.7375 V 0.1791

Frequency

(timescale 10 s)

FFNN 0.9806 0.0155 Hz 0.0120 Hz 0.0236 0.9525 0.0248 Hz 0.0194 Hz 0.0385

RBFN 0.9808 0.0154 Hz 0.0117 Hz 0.0234 0.9531 0.0246 Hz 0.0190 Hz 0.0381

LSTM 0.9577 0.0387 Hz 0.0147 Hz 0.0352 0.9045 0.0254 Hz 0.0196 Hz 0.0393

Voltage V1-2

(timescale 60 s)

FFNN 0.9245 0.7362 V 0.5660 V 0.1331 0.8734 1.1462 V 0.8234 V 0.1984

2-step

ahead

RBFN 0.9277 0.7493 V 0.5728 V 0.1378 0.8857 1.0882 V 0.8234 V 0.1984

LSTM 0.8994 0.9498 V 0.7954 V 0.2345 0.8394 1.956 V 2.0435 V 0.5358

Frequency

(timescale 60 s)

FFNN 0.9000 0.0307 Hz 0.0233 Hz 0.0465 0.8495 0.0378 Hz 0.0295 Hz 0.0580

RBFN 0.9000 0.031 Hz 0.0238 Hz 0.0476 0.8483 0.0377 Hz 0.0289 Hz 0.0579

LSTM 0.8672 0.0566 Hz 0.0940 Hz 0.0875 0.8203 0.0425 Hz 0.0320 Hz 0.0665

Table 2

Features of the offline-trained FFNNs based one-step and multistep ahead forecasters for different time scales.

Parameter

Forecaster

One-step ahead Multi-step ahead

TrF Nh Ne Data division TF h TF o TrF Nh Ne Data division TF h TF o

183 ms FFNN (V) trainlm 4 1500 (80,10,10)% logsig purelin trainbr 5 1200 (80,10,10)% logsig purelin

FFNN (F) trainlm 4 1500 (70,15,15)% logsig purelin trainlm 4 1500 (70,15,15)% logsig purelin

1 s FFNN (V) trainlm 4 1000 (80,10,10)% tansig tansig trainlm 4 300 (70,15,15)% logsig purelin

FFNN (F) trainrp 5 1600 (70,15,15)% logsig purelin trainlm 4 300 (70,15,15)% logsig purelin

10 s FFNN (V) trainlm 4 1100 (80,10,10)% tansig tansig trainbr 4 300 (80,10,10)% tansig purelin

FFNN (F) trainlm 6 1000 (70,15,15)% tansig purelin trainlm 4 300 (70,15,15)% logsig purelin

60 s FFNN (V) trainbr 4 500 (80,10,10)% logsig purelin trainbr 4 1500 (80,10,10)% logsig purelin

FFNN (F) trainbr 4 800 (80,10,10)% tansig purelin trainlm 5 400 (80,10,10)% logsig purelin

Nh is the number of hidden nodes. TrF is the Training function, N e is the number of epochs, TFh is the hidden layer transfer function, TF o is the output layer

transfer function.

Table 3

Features of the online-trained ENNs based one-step and multistep ahead forecasters for different time scales.

Parameter

Forecaster

One-step ahead Multi-step ahead

Learning rate Nh TF h TF o Learning rates (αl) Nh TF h TF o

183 ms
ENN (V) 0.42 5 logsig purelin (0.52,0.455,0.455) 5 logsig purelin

ENN (F) 0.9 5 logsig purelin (0.72,0.72,0.8) 5 logsig purelin

1 s
ENN (V) 0.42 5 logsig purelin (0.35,0.33,0.35) 5 logsig logsig

ENN (F) 0.98 5 logsig purelin (1.93,1.92,2.2) 5 logsig purelin

10 s
ENN (V) 0.6 3 logsig logsig (0.35,0.35,0.35) 3 logsig logsig

ENN (F) 0.35 3 logsig purelin (0.62,0.6,0.6) 3 logsig purelin

60 s
ENN (V) 0.008 4 logsig logsig (0.0082,0.008) 4 logsig logsig

ENN (F) 0.2 4 logsig purelin (0.05,0.1) 4 logsig purelin

5.2.1. One step ahead forecasting

Table 4 and the left side of Tables 5 and 6 show the error

metrics regarding the one-step ahead forecasters based on FFNNs

and ENNs for different time scales (183 ms, 1 s, 10 s, 60 s).

With reference to the frequency prediction, the FFNNs and

ENNs-based models perform well for all the considered time

scales and periods. Moreover, we observe that the frequency

forecast errors increase with the time horizon and the RMSEs are

smaller than 0.055 Hz. The 1 s, 10 s and 60 s frequency FFNNs-

based forecasters have shown the best performance with a cor-

relation factor greater than 84% and a MAPE smaller than 0.052%.

With reference to the 1 s-frequency prediction, the FFNN-based

forecaster performs much better than the ENN-based one.

On the other hand, the voltage forecasters perform well as the

maximum MAPE is 0.215%; this refers to the 60 s ENN-voltage

predictor. The ENNs models used for the 183 ms, 1 s and 10 s

8
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Table 4

Errors metrics calculated for the 1-step forecasters with four different time horizons (period: March).

Parameter

Forecaster

One-step ahead prediction

R RMSE MAE MAPE (%)

Voltage V1−2

(timescale 183 ms)

FFNN 0.9361 0.6451 V 0.4420 V 0.1063

ENN 0.9554 0.5417 V 0.4446 V 0.1069

Frequency

(timescale 183 ms)

FFNN 0.9977 0.0062 Hz 0.0032 Hz 0.0064

ENN 0.9991 0.0033 Hz 0.0026 Hz 0.0052

Voltage V1−2

(timescale 1 s)

FFNN 0.8801 0.7295 V 0.5562 V 0.1334

ENN 0.9281 0.5599 V 0.4641 V 0.1113

Frequency

(timescale 1 s)

FFNN 0.9964 0.0055 Hz 0.0036 Hz 0.0072

ENN 0.9785 0.0130 Hz 0.0101 Hz 0.0201

Voltage V1−2

(timescale 10 s)

FFNN 0.9356 0.7758 V 0.5791 V 0.1396

ENN 0.9363 0.7714 V 0.6017 V 0.1449

Frequency

(timescale 10 s)

FFNN 0.9704 0.0172 Hz 0.0130 Hz 0.0260

ENN 0.9447 0.0235 Hz 0.0175 Hz 0.0349

Voltage V1−2

(timescale 60 s)

FFNN 0.9355 0.8784 V 0.6286 V 0.1519

ENN 0.9216 0.9707 V 0.7084 V 0.1711

Frequency

(timescale 60 s)

FFNN 0.8759 0.0342 Hz 0.0257 Hz 0.0515

ENN 0.7000 0.0531 Hz 0.0404 Hz 0.0807

Table 5

Statistical errors between measured and forecasted grid quantities for different time horizons (period: April).

Parameter

Forecaster

One-step ahead prediction Multi-step ahead prediction

R RMSE MAE MAPE (%) R RMSE MAE MAPE(%)

Voltage V1−2

(183 ms)

FFNN 0.7700 0.6571 V 0.5197 V 0.1263 0.6208 0.6720 V 0.5397 V 0.1312

3-step

ahead

ENN 0.8000 0.5388 V 0.4445 V 0.1080 0.7400 0.5809 V 0.4990 V 0.1213

Frequency

(183 ms)

FFNN 0.9987 0.0041 Hz 0.0026 Hz 0.0052 0.9989 0.0036 Hz 0.0026 Hz 0.0052

ENN 0.9988 0.0038 Hz 0.0030 Hz 0.0061 0.9977 0.0049 Hz 0.0037 Hz 0.0074

Voltage V1−2

(timescale 1 s)

FFNN 0.9225 0.7591 V 0.5808 V 0.1407 0.9260 0.7404 V 0.5612 V 0.1360

ENN 0.9507 0.5907 V 0.4873 V 0.1180 0.9486 0.6023 V 0.5009 V 0.1213

Frequency

(timescale 1 s)

FFNN 0.9970 0.0048 Hz 0.0037 Hz 0.0075 0.9940 0.0069 Hz 0.0051 Hz 0.0103

ENN 0.9751 0.0137 Hz 0.0108 Hz 0.0215 0.9920 0.0078 Hz 0.0060 Hz 0.0120

Voltage V1−2

(timescale 10 s)

FFNN 0.9144 0.8009 V 0.6160 V 0.1492 0.9000 0.8609 V 0.6429 V 0.1557

ENN 0.9000 0.8600 V 0.6841 V 0.1657 0.9300 0.7001 V 0.5510 V 0.1335

Frequency

(timescale 10 s)

FFNN 0.9562 0.0181 Hz 0.0139 Hz 0.0278 0.9251 0.0236 Hz 0.0179 Hz 0.0357

ENN 0.9119 0.0257 Hz 0.0193 Hz 0.0386 0.9463 0.0203 Hz 0.0152 Hz 0.0304

Voltage V1−2

(timescale 60 s)

FFNN 0.8443 1.0089 V 0.7242 V 0.1754 0.7247 1.6104 V 1.3428 V 0.3258

2-step

ahead

ENN 0.8200 1.0838 V 0.8875 V 0.2150 0.8476 0.9999 V 0.8136 V 0.1971

Frequency

(timescale 60 s)

FFNN 0.8500 0.0343 Hz 0.0260 Hz 0.0512 0.8167 0.0361 Hz 0.0287 Hz 0.0574

ENN 0.7000 0.0499 Hz 0.0392 Hz 0.0784 0.6363 0.0562 Hz 0.0432 Hz 0.0864

Table 6

Errors metrics calculated for the one and multi-step forecasters with four different time horizons (period: May).

Parameter

Forecaster

One-step ahead prediction Multi-step ahead prediction

R RMSE MAE MAPE (%) R RMSE MAE MAPE(%)

Voltage V1−2

(183 ms)

FFNN 0.7716 0.8578 V 0.7179 V 0.1756 0.6000 0.8131 V 0.6333 V 0.1540

3-step

ahead

ENN 0.8200 0.5631 V 0.4715 V 0.1152 0.7200 0.5597 V 0.4639 V 0.1135

Frequency

(183 ms)

FFNN 0.9977 0.0021 Hz 0.0017 Hz 0.0034 0.9987 0.0024 Hz 0.0019 Hz 0.0039

ENN 0.9934 0.0036 Hz 0.0028 Hz 0.0055 0.9983 0.0028 Hz 0.0021 Hz 0.0043

Voltage V1−2

(timescale 1 s)

FFNN 0.6600 1.0905 V 0.8618 V 0.2103 0.6500 0.9884 V 0.6393 V 0.1559

ENN 0.8336 0.5559 V 0.4631 V 0.1130 0.8145 0.5772 V 0.4805 V 0.1174

Frequency

(timescale 1 s)

FFNN 0.9963 0.0039 Hz 0.0030 Hz 0.0061 0.9891 0.0059 Hz 0.0043 Hz 0.0086

ENN 0.9646 0.0121 Hz 0.0092 Hz 0.0185 0.9827 0.0074 Hz 0.0056 Hz 0.0111

Voltage V1−2

(timescale 10 s)

FFNN 0.9000 0.8846 V 0.6734 V 0.1635 0.9014 0.8805 V 0.6754 V 0.1641

ENN 0.9134 0.8268 V 0.6537 V 0.1589 0.9360 0.6768 V 0.5369 V 0.1304

Frequency

(timescale 10 s)

FFNN 0.9450 0.0170 Hz 0.0135 Hz 0.0271 0.9203 0.0204 Hz 0.0161 Hz 0.0321

ENN 0.9172 0.0208 Hz 0.0164 Hz 0.0327 0.9424 0.0176 Hz 0.0140 Hz 0.0279

Voltage V1−2

(timescale 60 s)

FFNN 0.9042 0.8949 V 0.7231 V 0.1760 0.7000 1.2933 V 0.8755 V 0.2119

2-step

ahead

ENN 0.9001 0.8833 V 0.6918 V 0.1683 0.9217 0.8108 V 0.6443 V 0.1567

Frequency

(timescale 60 s)

FFNN 0.8460 0.0282 Hz 0.0224 Hz 0.0449 0.8096 0.0309 Hz 0.0247 Hz 0.0494

ENN 0.7000 0.0399 Hz 0.0318 Hz 0.0635 0.6400 0.0485 Hz 0.0382 Hz 0.0764
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Table 7

Errors metrics calculated for the forecasters using multi-inputs and four different time horizons.

Parameter

Forecaster

One-step ahead prediction Multi-step ahead prediction

R RMSE (V) MAE (V) MAPE (%) R RMSE (V) MAE (V) MAPE(%)

Voltage V1−2

(timescale 183 ms)

1 input 0.9484 0.6116 0.4049 0.0975 1 input 0.9537 0.7043 0.5480 0.1318

3-step

ahead

2 input 0.9545 0.5749 0.4236 0.1020 2 input 0.9669 0.5928 0.4645 0.1117

3 input 0.9650 0.5058 0.3772 0.0908 3 input 0.9709 0.5558 0.4373 0.1051

4 input 0.9640 0.5151 0.4130 0.0995 4 input 0.9728 0.5383 0.4282 0.1030

Voltage V1−2

(timescale 1 s)

1 input 0.9148 0.7234 0.5773 0.1388 1 input 0.9181 0.7086 0.5334 0.1282

2 input 0.9366 0.6230 0.5129 0.1233 2 input 0.9401 0.6039 0.4865 0.1169

3 input 0.9476 0.5671 0.4873 0.1171 3 input 0.9468 0.5714 0.4814 0.1157

4 input 0.9500 0.5619 0.4648 0.1116 4 input 0.9480 0.5694 0.4695 0.1128

Voltage V1−2

(timescale 10 s)

1 input 0.9512 0.7566 0.5450 0.1316 1 input 0.9391 0.8773 0. 6660 0. 1607

2 input 0.9612 0.6731 0.5167 0.1247 2 input 0.9535 0.7571 0.5951 0.1436

3 input 0.9629 0.6575 0.5103 0.1231 3 input 0.9540 0.7388 0.5662 0.1366

4 input 0.9653 0.6490 0.5099 0.1230 4 input 0.9585 0.7003 0.5461 0.1318

Voltage V1−2

(timescale 60 s)

1 input 0.9378 0.8467 0.6065 0.1464 1 input 0.9166 1.4313 1.0777 0.2604

2-step

ahead

2 input 0.9433 0.8083 0.5963 0.1439 2 input 0.9291 1.2571 0.9366 0.2270

3 input 0.9468 0.7835 0.5946 0.1435 3 input 0.9317 1.1687 0.8612 0.2086

4 input 0.9455 0.8195 0.6231 0.1504 4 input 0.9392 1.2050 0.8946 0.2168

voltage predictions have shown a good performance for all the
considered time periods. Besides, for the time scales of 183 ms
and 1 s, the ENNs models perform better in terms of error metrics
than the FFNNs ones. Moreover, the 60 s voltage predictions using
the FFNN and the ENN models have acceptable MAEs and MAPEs.

Figs. 7–9 show the comparisons between the measured and
the predicted values of the grid voltage and frequency for the
one-step ahead forecasters considering the different time periods
(March, April and May) and horizons (183 ms, 1 s, 10 s and
60 s). The correlation between the measured and the forecasted
quantities is good for both the online-trained and offline-trained
forecasters.

5.2.2. Multi-step ahead forecasting
The error indices used to evaluate the performance of the

multi-step forecasters are presented in the right side of Tables 5
and 6. All forecasters perform well, albeit slightly worse than
the single-step forecasters, which is expected due to the greater
uncertainty associated with multiple time step predictions.

The maximum MAPE is 0.32%, and the maximum RMSE is
1.61 V. Both correspond to the 60 s FFNN-voltage forecaster. The
correlation coefficients in the range (0.6 – 0.99) are acceptable.
As in the case of one-step forecasters, we notice that the forecast
accuracy decreases with the time scale. The 183 ms and 1 s fre-
quency forecasters (FFNNs and ENNs) show the best performance
in term of accuracy (RMSE and MAE). For the four timescales, the
ENNs voltage estimators give the best results in comparison to
FFNNs forecasters (Tables 5 and 6). It can be seen also that more
accurate prediction of frequency, for 10 s scale, is achieved with
ENN model. Meanwhile, the FFNNs outperform the online-trained
ENNs in the case of 183 ms, 1 s and 60 s frequency forecasts.

Figs. 10 and 11 show a very good correlation between the
3step frequency forecasts and the measured data. Fig. 11 also
shows that for the time scales of 183 ms and 1 s, the FFNNs-based
voltage predictors are the worst performers. Besides, Fig. 12 illus-
trates how the adopted ENNs and FFNNs have fit adequately the
test data for the case of one-step voltage forecast (60 s timescale)
and three-step frequency prediction (for 10 s timescale).

In summary, the results show that the predictions based on
current information are better for the frequencies than the volt-
ages. This is due to the random nature of the voltage profile that
is more difficult to model, especially in the case of the offline-
trained FFNNs. This is why the FFNN-based voltage forecasters
need to be retrained in order to take into account the dynamic
change in grid voltage profile. For this reason, in the next subsec-
tion we will show a study on the impact of the input variables on
the voltage forecast accuracy.

5.3. Impact of the input variables on the voltage forecast accuracy

As shown in Fig. 13, in order to evaluate the performance of
the FFNN-based voltage forecasters, we consider three different
multi-input models for both the one and multistep ahead pre-
dictions. The input variables defined for each FFNN-based model
are:

– For the first model, the actual and past observations: V12(k)

and V12(k − 1). The input–output relationship can be

expressed as:

⎧

⎨

⎩

V̂12(k + 1) = f 11S (V12(k), V12(k − 1))
{

V̂12(k + 1), V̂12(k + 2), V̂12(k + 3)

}

= f 1MS (V12(k), V12(k − 1))

(6)

where f 11S and f 1MS are the nonlinear approximation functions

for the one step and the multistep predictors respectively.

– For the second model, we consider three points of the volt-

age trajectory V12(k), V12(k − 1), and V12(k − 2):

⎧

⎨

⎩

V̂12(k + 1) = f 21S (V12 (k) , V12 (k − 1) , V12(k − 2))
{

V̂12(k + 1), V̂12(k + 2), V̂12(k + 3)

}

= f 2MS (V12(k), V12(k − 1), V12(k − 2))

(7)

where f 21S and f 2MS are the nonlinear approximation functions

for the one step and the multistep predictors respectively.

The knowledge of the two previous values of the volt-

age gives more information regarding the interval and the

direction of the variation of the voltage.

– For the third model, the input variables are four: the actual

three phase line-to-line voltages V12(k), V13(k), V23(k), and

the past value V12(k − 1):

⎧

⎨

⎩

V̂12(k + 1) = f 31S (V12 (k) , V12 (k − 1) , V23 (k) , V13(k))
{

V̂12(k + 1), V̂12(k + 2), V̂12(k + 3)

}

= f 3MS (V12(k), V12(k − 1), V23 (k) , V13(k))

(8)

where f 31S and f 3MS are the nonlinear approximation functions

for the one step and the multistep predictors respectively.

In order to compare the three models we used the same features
and learning parameters used for the single-input FFNNs (listed in
Table 2). The initialization of weights and biases is performed us-
ing the Nguyen Widrow method ‘initnw’, while the ‘mapminmax’
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Fig. 10. Real-time simulation results for the three-step ahead forecasters with four time horizons (183 ms, 1 s, and 10 s, period: April).

Fig. 11. Real-time simulation results for the three-step ahead forecasters with four time horizons (183 ms, 1 s, and 10 s, period: May).
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Fig. 12. Comparison between predicted and measured data for: (a) one-step

ENN voltage forecaster (60 s), (b) one-step FFNN voltage forecaster (60 s), (c)

3-step ENN frequency forecaster (10 s), (d) 3-step FFNN frequency forecaster

(10 s).

function is used for the input–output normalization. In order to

obtain the optimal FFNN-based forecaster, the training is repeated

10 times for each case with a random initialization of the FFNN

parameters. After the training process, the optimal multi-input

FFNN forecasters are simulated for the same test dataset. The

statistical errors calculated for each time scale are reported in

Table 7.

The 3 and 4-input FFNN models show the best performance

in terms of correlation coefficient and error metrics, with a sig-

nificant improvement in comparison with the one-input FFNN

forecasters. In the case of 1 s and 10 s one-step and 3-step ahead

prediction, the 4-input FFNNs give the most accurate results with

a correlation factor greater than 94% and a RMSE smaller than

0.71 V. The 3-input FFNNs work more precisely in the case of 60

s one-step and 2-step voltage forecasts. This means that the use

of more information about the historical voltage profile, as well

as current observations of three-phase voltage components, help

the FFNN to learn more effectively the relationship between the

inputs and outputs.

6. Conclusions

This paper proposes a method for very-short real-time fore-

cast of grid voltage and frequency based on ANNs. This type

of forecasters can be used in an advanced control schemes as

well as in monitoring systems of distributed generators. To the

best of our knowledge, this is the first work that proposes the

multistep ahead prediction of grid quantities. The key benefit

of the multistep forecasting is to prevent grid faults caused by

random change of load demand or power generation.

In this study, a comparison between different types of offline-

trained ANNs based forecast models (FFNNs, RBFNs and LSTMs)

is performed. The performance of ANNs predictors have been

checked through simulations for different time scales. It has been

demonstrated that FFNNs and RBFNs based models can accurately

predict the grid voltage and frequency with a big similarity in

the results. The main difference between the developed forecast

models is the architecture complexity of neural networks.

In comparison to other works in this area, the presented FFNN

and ENN predictors have been validated in real-time, for different

time scales (183 ms, 1 s, and 10 s), and using real-time measure-

ments of grid voltage and frequency. The prediction accuracy of

the developed one-step and multi-step ahead forecasters, imple-

mented on a dSPACE controller, has been demonstrated for the

scales of 183 ms, 1 s, 10 s, and 60 s. It has been seen that the

frequency forecasters perform better than the voltage forecasters

for all investigated ANNs. The best performance was from the

183 ms and 1 s frequency forecasters, which yield values of RMSE

and MAE close to zero for both case of one step and three-step

ahead prediction. The precision of the forecasters degrades as the

time horizons becomes larger. In the case of voltage prediction,

we found that the accuracy of offline trained FFNNs, using current

observation only, needs to be improved. Thus, three different

FFNN models are investigated with different combinations of

input variables to study their impact on grid voltage forecast. We

observed an improvement in the prediction accuracy with the

three-input and four-input FFNN models.

The main advantages of the developed ANNs-based forecasters

are related to the fact that they do not need any mathematical

modeling of the physical system, they have a simple structure,

and are easy to implement on low cost hardware. Moreover, the

key benefit of the adaptive ENN is its ability to give correct and

accurate results based on online learning rule, while avoiding the

time consuming task of offline training. The performance of the

developed forecasters can be enhanced, especially in the case of

long time scales (i.e. 60 s), by using advanced training algorithms

and considering other input variables (like active and reactive

powers).
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Fig. 13. Configuration of the multi-input FFNN models proposed for the voltage prediction: (a) one step ahead, (b) two-step ahead.
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a b s t r a c t

This paper proposes an Explicit Model Predictive Control (eMPC) for the energy management of an
e-vehicle charging station fueled by a photovoltaic plant (PV), a battery energy storage system (BESS),
and the electrical grid. The method computes offline an explicit solution of the MPC, which is stored
and then used for real time control. Multiparametric programming is used to calculate the explicit
solution by mapping the MPC laws as a function of uncertain parameters. In this paper, the uncer-
tainties introduced into the multiparametric programming are the photovoltaic power production, the
electricity price, the battery’s state of charge, and the electric vehicle power consumption. Moreover,
the environmental impact of the charging station operation is considered through the CO2 emissions
level. The explicit solution is computed for a specific range of uncertain parameters. Then, during the
real-time control, their current values are measured to evaluate the control laws saved beforehand. The
proposed approach, consisting of an offline MPC-based determination of the control laws followed by
their online use, reduces the computational burden without affecting the MPC performance. Numerical
simulations and experimental results confirm the eMPC’s performance for the proposed application.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

The market for electric vehicles (EVs) is growing exponentially,

with the total number of EVs on the road nearing 10 million

in 2020 and expected to reach around 140 million by 2030. It

will cause an increase in electricity demand of at least 2% of

global electricity consumption by 2030, causing an increment of

charging stations for home, work, and commercial purposes of up

to 125 million [1].

The use of clean and sustainable energy is mandatory to keep

CO2 emissions at a low value. Consequently, the electrical system

must face new challenges to supply the necessary power when

requested by the EVs with the lowest possible environmental

impact. Hence, suitable solutions are photovoltaic (PV) charging

stations, including a battery energy storage system (BESS) con-

nected to the electrical grid. The Energy Management System

(EMS) of such stations must provide the energy requested to

charge the vehicle with the minimum environmental impact and

at the minimum price.

∗ Corresponding author.

E-mail address: anacabrera.t@gmail.com (A. Cabrera-Tobar).

This intelligent charging should consider parameters such as
the fluctuation of PV production, the EV charging time, the EV
power consumption, the State of Charge (SoC) of the BESS, the
electricity price, and the CO2 emissions related to the energy
drawn from the electrical grid. These parameters are commonly
treated as certain when scheduling by deterministic optimization
is developed, e.g., in [2]. However, in the real time operation of
these charging stations, some of these parameters are forecasted
with a degree of error, such as PV production, CO2 emissions, and
electricity price, or they are random, like the EV charging time, its
arrival, and departure time. The uncertain nature of these param-
eters could lead to cumulative errors during the day, generating
higher environmental and economic costs. Consequently, energy
management techniques accounting for uncertainties appear to
help improve the energy management quality.

In the literature, techniques such as fuzzy, information gap
decision theory, and robust optimization have been applied to
manage EV charging stations by accounting for uncertain pa-
rameters. In [3], fuzzy optimization is applied, where the energy
market price fluctuation, the EV’s arrival and departure time,
and the EV battery’s state of charge are considered uncertain-
ties. However, it does not include an electrical power generator
employing renewable energy or a storage unit in this case. In

https://doi.org/10.1016/j.segan.2022.100769
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Nomenclature

α1, α2, α3 Weight values to give priority to the
control variables

Γ1 Limit factor for electricity price (e )

Γ2 Limit factor for CO2 emissions (kg)

Θ Space of uncertainties

θ Vector of uncertainties

θCO2
Uncertainty of CO2 emissions (kg)

θEV EV’s demand uncertainty (W)

θpv PV power production’s uncertainty (W)

θp Uncertainty of electricity price (e )

θSoC SoC’s uncertainty (%)

A, B, C Coefficient matrices of the state space
model

Cmax Maximum battery capacity (sW)

CO2(k) Instantaneous (CO2) emissions (kg)

G,W , E Coefficients of inequalities constraints

k Time instant (s)

m Number of state variables

n Number of control variables

Nc Control horizon

Np Prediction horizon

nbat Battery efficiency (%)

p(k) Instantaneous electricity price (e )

Pbat (k) Instantaneous battery power (W)

Pmin
bat , P

max
bat Lower and upper bounds of Pbat (W)

PEV (k) Instantaneous EV power (W)

Pgrid(k) Instantaneous grid power (W)

Pmin
grid , P

max
grid Lower and upper bounds of Pgrid (W)

Pinv Inverter’s power (W)

Ppv(k) Instantaneous PV power (W)

Q ,H, c Cost function coefficients with the cor-
responding dimensions

SoC(k) Instantaneous state of charge of the
battery (%)

SoCmin, SoCmax Lower and upper bounds of BESS’s SoC

(%)

Ts Sampling time (s)

u(k) Control variables

x(k) State space variable

CR Critical regions

i Number of CR

contrast, the system studied in [4] includes a PV generator, a
storage unit, and a fuel cell. The algorithm used for optimiza-
tion is information gap decision theory, where the uncertainty
accounted for is the load. In [5], it is concluded that affine arith-
metic and robust optimization approaches are helpful tools for
keeping track of the parametric uncertainties, but at the price of
a high computational cost and can result in costly, respectively.
However, the downside of these techniques is that the schedule
is done once for a certain period. Despite these are accounting
for uncertainties, the schedule calculated cannot be changed in
real time operation, which leads to suboptimal performance of
the charging station.

Thus, Model Predictive Control (MPC) is a more suitable algo-
rithm for real time operation by taking into account uncertainties
such as disturbances and the future behavior of the system [6].
The control law is determined by optimizing the value of a suit-
able objective function by considering several constraints and a

predictive model. The control law is computed at every sampling
time for a particular horizon time by refreshing the state of the
system, and the corresponding prediction values [7].

The MPC sampling time can range from several seconds to
several hours. In microgrids that include PV systems and EVs,
the performance of the control algorithm can be affected by the
uncertainty of the solar irradiance level and by the EV’s connec-
tion/disconnection time and its power demand. Thus, the smaller
the sampling time, the smaller these uncertainties affect the
control laws. Unfortunately, this may result in a higher computa-
tional burden and lower economic efficiency. For instance, in [8],
the authors present a MPC for controlling a microgrid where the
optimization algorithm is treated by a multi-integer linear pro-
gramming (MILP). The MPC-MILP calculates the schedule of the
energy flow for the different distributed generators every 15 min
and predicts the system’s state for one hour. The computation
time takes 24 s, and it is repeated every 15 min on an Intel
Core 2 Duo CPU, 3 GHz. The scheduling is based on the price
forecast, power generation, and load, where no error is assumed.
When a disturbance to the parameters occurs, the schedule is
recalculated. MPC has been used jointly with other techniques
to account for uncertainties. In [9], the use of a robust-MPC for
a PV-BESS scheduling is proposed, with the economic incentive
revenue being considered uncertain. The latter is modeled as a
box uncertainty set to get the control law as a function of its
robustness. However, the uncertainty set’s limits negatively affect
the optimal performance of the PV-BESS. The computational time
is around 20 ms using a 4.3 GHz CPU. In [10], a MPC-based
chance-constraints stochastic optimization is adopted to manage
the power flow in a microgrid. The power generation forecast, the
demand, and the EV’s connection and disconnection times are the
uncertain variables. Although the chance-constraints stochastic
optimization benefits from the MPC, this technique significantly
affects the computation time, so it is unsuitable for a sampling
time lower than one hour.

Explicit MPC (eMPC) reduces the online optimization time
and algorithm complexity. This method operates offline to create
an explicit function that is a map of the optimal control laws
depending on the uncertain parameters and on the active sets
related to the given constraints [11]. It inherits the MPC advan-
tages without requiring online optimization. Indeed, during the
online operation, it only evaluates the explicit function calculated
beforehand, thus offline, by using the actual values of the param-
eters considered uncertain in the offline MPC based optimization.
This approach drastically reduces the online computation time
compared to a classical MPC, as stated in [12]. For this purpose,
Multi-Parametric Programming (MPP) is a mathematical tool that
helps solve the explicit solution of the eMPC problem. The MPP
allows creating the optimized control laws as functions of the un-
certain parameters, the latter being modeled as bounded ranges
of values, thus not as historical sequences of data.

The MPP has been widely used to implement eMPC approaches
in batch scheduling, control, and optimization of process system
engineering [13]. Instead, in energy, this approach has not been
exploited. Few examples use this technique for EMS, accounting
for uncertainties in the literature. In [14], MPP has been used to
dispatch energy by minimizing a microgrid cost operation. The
uncertainties affecting the load consumption, the wind and the PV
power production forecasts were accounted for. The computation
time for the real time operation is only 34.8 µs in contrast
with 372 ms using a traditional online optimization. The offline
optimization is carried out on a remote cloud platform, and the
real time operation on a digital signal processor. In [15] the same
technique is used to manage the energy schedule of a combined
heat and power energy system. Uncertainty in a rolling horizon
framework affects the demand and state of the power units and
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the heating system. Unfortunately, this approach was not applied
to a real system. In [16], an eMPC battery charging control based
on eMPC was presented, but no parameters were considered
uncertain.

The eMPC has three main advantages compared to other al-
gorithms, (i) it allows having short computation times during the
online application of the control rules, so that this phase can be
implemented on hardware with low computing capabilities, (ii)
it is easy to code, (iii) it accounts for uncertainties. Thus, it is
suitable for real time energy management applied in nano and
microgrids where the variation of renewable energy and load can
affect the energy scheduling and its optimization.

In this paper, the eMPC is applied for the first time to a
PV/BESS charging station by keeping into account energy, eco-
nomic and environmental aspects. The proposed eMPC takes into
account five uncertainties: (i) the PV power production, (ii) the
grid energy price, (iii) the CO2 emission level, (iv) the EV power
consumption, and the (v) BESS’s SoC. The eMPC is explicitly
formulated by means of MPP. This paper explicitly pays attention
to the use of the MPP as part of the mapping strategy when
uncertainties are considered and how these specific parameters
affect the optimal schedule. Furthermore, the eMPC is applied to
a real PV/BESS charging station located at the University of Trieste
(Italy)

The contributions of this paper can be summarized as follows:

1. The development of the problem formulation of a PV/BESS
charging station suitable for the eMPC framework is intro-
duced.

2. The inclusion of PV production, EV power consumption,
CO2 emissions, electricity price, and BESS’s SoC as uncer-
tainties in the MPP paradigm is discussed.

3. The scheduling of the energy flow based on the rolling
horizon framework by using MPC and the evaluation of the
mapping of control laws saved by the MPP at every time
step is proposed.

4. The implementation of the eMPC in a real PV/BESS charging
station in two different testbeds, one using a standard PC
and the other using the dSPACE Scalexio system as a central
controller, is demonstrated.

The remaining of this paper is organized as follows: Section 2
describes the structure of the charging station located at the
University of Trieste (Italy). Then, Section 3 presents the model
and the problem formulation in the eMPC framework. Section 4
explains the real time control. Afterwards, numerical simulations
are described and presented in Section 5. Section 6 presents the
experimental studies. Then, Section 7 discusses the advantages
and disadvantages of using eMPC on this type of application.
Finally, the conclusions are presented in Section 8.

2. Description of the charging station

The University of Trieste (Italy), thanks to the project MUSE
[17], has recently installed a PV based charging station including
a Sonnen inverter with an embedded battery. The system is
connected to the electrical grid feeding the University campus
(Fig. 1). The PV array consists of two strings with 7 PV modules
each and has a nominal power of 3.9 kWp. The single-phase
inverter Sonnen Hybrid 9.5/10 has a maximum power equal to
3.3 kW, and it converts the DC power from the PV array and the
Battery to AC. The lithium iron phosphate 10 kWh battery em-
bedded into the Sonnen inverter can deliver a maximum power
equal to 3.3 kW.

Each of the two charging stations, one dedicated to EVs and
the other to electric bikes, has two sockets. The EV and bike
charging stations can have a maximum power of 22 kW and
440 W per socket, respectively. However, the station only charges
a specific EV, a Nissan Leaf, for the current study. This car has a
40 kWh battery and an embedded 6.7 kW battery charger.

Fig. 1. Main components of the PV based charging station at the University of

Trieste.

3. Modeling and problem formulation

To capture the dynamic of the charging station, state space
model is commonly used specially for applications in eMPC. This
model includes a vector of state variables (x(k)) and a vector of
control variables (u(k)) and takes the following form:

x(k + 1) = Ax(k) + Bu(k),

y(k) = Cx(k).
(1)

A is the identity matrix, B depends on the coefficients of the
control variables and C is the matrix identity so that the output
y(k) is equal to state variable x(k) and k is the time step for a
discrete state space model.

For the current application, the BESS’s SoC (SoC(k)) is the state
variable, while the battery charging/discharging power (Pbat (k))
and the power from/to the main grid (Pgrid(k)) are the control
variables (u(k)). Thus, the vectors appearing in the state space
model are:

x(k) = [SoC(k)] (2)

u(k) =
[

Pbat (k) Pgrid(k)
]

. (3)

The system’s dynamic is based on the storage unit (BESS)
and the balance equation of power of the charging station. In
this model, the power fed into the grid is positive, and the one
extracted from the grid is negative. In the case of the BESS, the
power is positive when it is discharging and negative other-
wise. The BESS’s SoC depends on its previous state and the ratio
between the current battery capacity and its maximum value
Cmax. The battery capacity varies with time and depends on its
efficiency (nbat ), the current Pbat (k) and the sampling time (Ts):

SoC(k + 1) = SoC(k) −
nbatTs

Cmax

Pbat (k). (4)

3
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In this model, the efficiency for charging and discharging is as-
sumed to be equal for both cases and positive.

Then, the main equation that governs the charging station is
the power balance which is the net sum between Pbat (k), Pgrid(k),
Ppv(k), PEV (k) at the point of common coupling. The sum should
be equal to zero at every time instant, thus:

Pbat (k) + Pgrid(k) + Ppv(k) − PEV (k) = 0. (5)

3.1. Problem formulation

The main goal of the optimization problem is to reduce the
CO2 emissions and operational costs. This goal is gained by min-
imizing the grid power feeding the EV for a specific prediction
horizon (Np), thus maximizing the exploitation of the PV/BESS
system. Moreover, the BESS should charge only when PV power
is available. Thus, the objective function includes three terms: the
power from the grid, the BESS, and finally, the power from the PV.
The three weights (α1, α2, α3) assign the priority to each power
source. The objective function is expressed as follows:

min J(k) =

Np−1
∑

k=1

α1P
2
grid(t +k)+α2(P

2
bat (t +k))+α3(P

2
pv(t +k)). (6)

According to the strategy explained above, the highest priority is
given to the group of the PV/BESS. Meanwhile, the lowest priority
is given to the grid, as the main objective is to minimize the
energy consumption from the grid. These values remain fixed
during this study. The weight factors, α1, α2, and α3 have been
selected by using the guidelines presented in [18], and by testing
different weight factors to check the system’s performance. The
testing of these weight factors was performed with the main
goal of the grid energy minimization. On this, it is important
to mention that the BESS should not be charged during night
hours by the grid. During the day, the BESS can be charged by
the available PV production. However, if the EV connects during
the day and the BESS is not fully charged, the BESS and the EV
could have power coming from the PV production. Thus, α2 and
α3 are equal. For this application, α1 is 0.016, (α2) and (α3) are set
to 0.014. These values allow a good trade-off between minimizing
the power provided by the grid and the MPC controller stability.

3.2. Constraints

The constraints are formulated by considering the safety limi-
tations of the system. The SoC should be inside some safety limits
in order to prevent the battery degradation. The maximum and
minimum power limitations for the battery and the PV system
are considered too:

SoCmin
≤SoC(k) ≤ SoCmax

,

Pmin
grid ≤Pgrid(k) ≤ Pmax

grid ,

Pmin
bat ≤Pbat (k) ≤ Pmax

bat .

(7)

In the real system considered in this paper for the experi-
mental validation of the eMPC, the PV system, and the BESS are
both managed by the same inverter (Pinv), so that the following
additional constraints are accounted for:

Pmin
inv ≤Pinv(k) ≤ Pmax

inv ,

Pinv =Ppv(k) + Pbat (k).
(8)

3.3. MPP formulation

Because the online solving of the previous problem formu-
lation can be time-consuming in a real implementation, MPP is
formulated in order to solve the problem offline over predefined
ranges of parameters treated as uncertain.

In the current case, the cost objective function presented in
Eq. (6) is translated to a MPP-Quadratic Programming (MPP-QP),
which obeys the following expression:

J(θ ) = min
u∈R

(Qu + Hθ + c)Tu

s.t. G(θ )u ≤ W + Eθ

θ ∈ Θ ⊂ R
q

θ
min
l ≤ θl ≤ θ

max
l , l = 1, . . . , q.

(9)

On this equation, (Θ) is the space of the uncertainty parameters,
Q ∈ R

(nxn), H ∈ R
(nxq), c ∈ R

n, G ∈ R
(mxn), G ∈ R

(mxn), W ∈ R
m, and

E ∈ R
(mxq). The objective function (6) is formulated according to

the quadratic MPP function presented in (9), thus Q , H , c , G and
W are computed from the matrices A, B and α. The mathematical
transformation is explained in [19].

The solution to the problem is a piecewise affine function
defined by the active sets constructed due to the constraints and
the limits given by the uncertainties. Every function defines a
polygon, known as a Critical Region (CR). By definition, in the
CRs, the objective function relates to each of the uncertainties and
their combination. Each CR gives the optimal value of the control
variable vector (u(θ )) when the uncertain parameters assume
values falling in that CR [13].

3.4. Uncertainties

In MPP formulation, the uncertainties are modeled as bounds
defining the uncertain ranges that could correspond to forecast-
ing errors, variance, or minimum and maximum values. For an
MPP formulation, the uncertainties should be those parameters
that can be measured in real time. In the present application,
these parameters are the PV production (θpv), the EVs consump-
tion (θEV ), the BESS’s SoC (θSoC ), parameters that come from
the charging station. Furthermore, electricity price (θp) and CO2

emissions (θCO2
) are also parameters that can be known in real

time and are given by the Transmission System Operator (TSO).
Thus, the vector of the uncertainty parameters is defined as:

θ (k) =
[

θpv(k), θEV (k), θSoC (k), θp(k), θCO2
(k)

]

. (10)

For the current case, the uncertain parameters assume values
within given bounds as follows:

Pmin
pv ≤ θpv ≤ Pmax

pv ,

Pmin
EV ≤ θEV ≤ Pmax

EV ,

SoCmin
≤ θSoC ≤ SoCmax

,

Pricemin
≤ θp ≤ Pricemax

,

COmin
2 ≤ θCO2

≤ COmax
2 .

(11)

In order to obtain a possible solution of the MPP for any
given day, the ranges assumed for θpv and θEV go from 0 to the
maximum PV power and the maximum EV load respectively.
In the case of θSoC , the minimum and maximum values are the
same as the limitations chosen in (7). For the limitations of price
and CO2 emissions, it is necessary to analyze the data given by
the TSO from the previous years, in order to see which are the
minimum and maximum possible value. In this study, the ranges
chosen are wide enough in order that the mapping of the critical
regions guarantee the solution for any given case, even for quick
variations of the uncertainties.

Two further constraints are added concerning to the two last
uncertain parameters. These constraints give a threshold regard-
ing the CO2 emissions and the electricity price. This threshold
is limited by Γ1 and Γ2 for the electricity price and the CO2

emissions, respectively. The lower the value of Γ1 and Γ2, the
lower the chance to recharge the EV with power from the grid
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when CO2 emissions and electrical price are higher in the day.
These two constraints are written as:

0 ≤ θp ∗ Pgrid(k) ≤ Γ1, (12)

0 ≤ θCO2
∗ Pgrid(k) ≤ Γ2. (13)

3.5. MPP model solving

In literature, a few algorithms for multiparametric quadratic
programming are available. They have three main objectives: (i)
the creation of the CRs in the multidimensional space of the
uncertain parameters, (ii) the calculation of the control law corre-
sponding to each region, and (iii) the capability to enter into the
corresponding CR once the actual value of the parameter that was
considered as uncertain during the optimization process becomes
known. Regarding the first objective, the partition of the problem
in different CRs is based on computational geometry. This algo-
rithm creates piecewise quadratic models into polyhedral regions
limited by the given constraints, the inputs, and the space of
states. The geometric computation algorithm divides the space
for every time step of the corresponding prediction horizon. This
approach is explained in detail in [20]. As for the second objective,
a Parametric linear complementary programming is applied to
every created CR. This repeats for the complete parameter space
and it is performed offline. Finally, regarding the last goal, a
Point location problem is used in order to find the CRs and the
corresponding control law [21]. This third step operates on the
real values of the parameters, thus it is effectively developed
online. More information about these algorithms can be found
in [12]. As for the offline optimization procedure, the algorithm
steps are summarized as it follows:

1. Divide the parameters space in a range of finite values (i);

2. Select a parameter (θ );

3. Set the constraints and the initial state of variables;
4. Calculate the corresponding critical region (CRi) for the

specific (θi);

5. Solve the MPP quadratic problem to obtain the control law
as a function of the parameter (u(θi));

6. Store the control function;
7. Repeat this for every time step into the prediction horizon;

8. Repeat the procedure until all the parameter space is ana-
lyzed.

Once the critical regions have been created for the entire
parameter space, these are used at each time step during the
real time operation, when the actual values of the parameters
that were considered as uncertain in the offline optimization
procedure are known. Thus, the CRs are evaluated as follows:

1. Measure the real values of θ ;
2. Search the corresponding CRi, such that θ ϵ CRi;

3. Calculate the control variables (u(θ )) for the complete Np.

Fig. 2 shows an example of a bi-dimensional space of two un-
certain parameters θ1 and θ2 in which two CRs, i.e., CR1 and
CR2, have been generated through MPP. If, during the real-time
operation of the system, it is θ1 = a and θ2 = b, then the objective
function value J(a, b) falls within CR1, thus the system control
variables are settled according to this. Instead, if θ1 = a′ and
θ2 = b′, then the objective function value falls in CR2, so that the
control variables are settled differently from the previous case.

For the current application, the quadratic MPP problem is
solved by using the toolbox MPT 3.0 available in MATLAB, with
an interface to YALMIP. This toolbox is specialized for paramet-
ric optimization, computational geometry and model predictive

Fig. 2. Simple example of CRs in the space of the uncertain parameters.

Fig. 3. Example of the eMPC operation (Np: Prediction Horizon, Nc : Control

Horizon).

control. The main solver is Parametric Linear Complementary
Programming (PLCP). Additionally, this toolbox permits saving
the CRs defined by the control laws in C code, which can be used
by other software or platforms.

4. Real time control using eMPC

In this section, the real time control is formulated based on
eMPC. The common operation of this technique is to provide an
optimal solution for the future, which yields in the current state,
constraints, and the given dynamics of the system. In the specific
framework of the charging station, this means that, at the current
point in time (k), an optimal plan is formulated for a prediction
horizon (Np) based on the prediction of the response of the BESS,
the current θSoC , and the real values of θpv , θev , θCO2

, and θp.
Then, the CRs are evaluated to search for the control law, taking
into account the actual values of the uncertainties. The control
variables (Pbat and Pgrid) are chosen from these CRs for the next
time step (k + 1) known as control horizon (Nc). The decision is
implemented for this Nc . At the next step, the new values of the
uncertainties and the current state of the battery are measured,
and a new optimal schedule is planned. As a result, the horizon
is shifted (see Fig. 3) at every sampling time. This rolling horizon
approach helps to compensate for the optimal solution when new
information is available, e.g., uncertainties.
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Fig. 4. eMPC framework.

In the current study, the offline mapping of the CRs occurs
only once, and it is not repeated at any time of eMPC operation.
If the problem formulation changes, e.g., because of the ranges of
the uncertain parameters, the constraints, the horizon Np and Nc

change, then the CRs have to be recalculated. The operation of the
eMPC is summarized in Fig. 4.

5. Numerical simulation

This section presents the simulation results of the proposed
EMS based on eMPC. It first presents a basic case study to explain
the operation of the proposed algorithm. Then, it presents the
performance under different settings. The data for the numeri-
cal simulation is obtained from the PV/BESS based EV charging

station at the University of Trieste. The main parameters of the
charging station are summarized in Table 1, while those referring
to the BESS are collected in Table 2. The data of PV production,
EV power consumption, and the SoC of the BESS have been saved
with a Ts of five minutes.

5.1. Case study description

This case study aims to show the way the proposed algorithm
works. Thus, the set of uncertain parameters has been limited
to θPV , θEV , and θSoC , so that the CRs can be visualized in three-
dimensional space. The ranges of these uncertain parameters (11)
are listed in Table 3. As for θPV and θEV , the upper bounds are
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Table 1

Charging station’s main parameters.

Parameters Value Units

Maximum PV power 3900 W

Maximum battery power 3300 W

Maximum inverter power 3300 W

EV charging power 6700 W

Table 2

BESS main parameters.

Parameters Value Units

Technology Ion Lithium iron phosphate battery

Normal capacity 10 kWh

Number of max cycles 10000 cycle

Vdc 49 V

Efficiency 98 %

Warranty 10 years

Maximum power 3.3 kW

Table 3

Lower and upper bounds of the uncertainties for the numerical simulation.

Uncertainties Min Max Units

θPV 0 3900 W

θSoC 10 90 %

θEV 0 6700 W

θSoC 10 90 %

Table 4

Vertices corresponding to CR2.

θPV (W) θEV (W) θSoC (%)

3300 0 90

0 0 90

3300 3300 90

3300 0 68.57

set by taking into account the rated power presented in Table 1.

The upper and lower bounds of the θSoC range have been fixed by

considering the safety limits of 10% and 90%, respectively.

The sampling time chosen for the model formulated in Sec-

tion 3 is 5 min. In the objective function presented in Eq. (6), the

weight values are: α1 = 0.016, α2 = 0.014, and α3 = 0.014. For the

eMPC, the Np is set to 12 time steps and Nc is equal to one time

step. The time step corresponds to the sampling time, i.e., 5 min.

For this case study, experimental data acquired on the 22nd of

July 2020 have been considered.

5.2. MPP solution

MPP solves the optimization problem and determines four

CRs (Fig. 5). These polyhedral regions in the three-dimensional

space of the uncertain parameters correspond to 33 variables,

154 inequality constraints, 22 equality constraints. Additionally,

33 lower and upper bounds corresponding to each time step of

the Np have been considered.

As an example, it is worth noting that CR2 is a pyramid where

the θPV varies in the range [0, 3300] W, the θSoC in the range [80,

90]%, and the θEV in the range [0, 4000] W. It has in total four

vertices, taking the values presented in Table 4. This region is

represented as follows:
⎡

⎢

⎣

1 0 0
0 −1 0
0 0 1

−0.0065 0.0065 −0.9999

⎤

⎥

⎦
×

⎡

⎢

⎣

θPVk
θEVk
θSoCk
u(k+1)

⎤

⎥

⎦
≤

⎡

⎢

⎣

3300
0
90

−89

⎤

⎥

⎦

Fig. 5. Critical regions constructed by the MPP when θPV , θEV and θSoC are taken

into account.

Fig. 6. Critical regions when θSoC is known and equal to 90%.

Every CR is associated with a specific set of control variables
values and does not mesh up with other regions. The total so-
lution is saved in a look-up table using a memory space of 9
kB.

5.3. eMPC performance

The eMPC moves in these CRs by reading the set of actual un-
certain parameters values and by evaluating in which CR they fall
to get the optimized values of the control variables. For instance,
in the case θSoC = 90%, the solution falls inside one of the CRs that
are visible in Fig. 5 at the top face of the parallelepiped. This plane
is shown in Fig. 6, where are three critical regions that depend on
two parameters: θpv , and θEV .

As an example of the eMPC operation through the CRs shown
in Fig. 6, at the first time instant, with θSoC = 90%, θpv = 1500 W
and θEV = 3000 W, the objective function takes the value J1.
The optimized schedule is determined for the Np, and only the
samples for the corresponding Nc are implemented. In this case,
Nc is equal to the sampling time. As a result, the EV is fed from
the grid for the next sampling time by 694 W, by 805 W from the
BESS, and the PV array provides the remaining part.

In another instant, the current values of the uncertain parame-
ters are again measured, and they are: θSoC = 11%, θpv = 1500 W,
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Fig. 7. Critical regions when θSoC is known and equal to 11%.

Fig. 8. Power profiles for the simulation test.

and θEV = 3000 W, so J2 is obtained. It falls in CR4, and it is in the
plane illustrated in Fig. 7. For this value, the EV is fed from the
grid by 1045 W, by 455 W from the battery and the remaining
part is provided by the PV array.

The evaluation of the CRs with the current values of the
parameters that were considered as uncertain during the MPP
formulation is repeated every sampling time. The power profiles,
computed as described above over the whole day, are shown in
Fig. 8. In the day considered in this example, the EV connects for
recharging early in the morning, at 9 am, when the PV production
is still low and the BESS SoC is close to 90%. The algorithm
calculates the optimized control values of Pgrid and Pbat . As long
as the PV array delivers more power, the battery reduces its
contribution. The EV battery recharging terminates after three
hours from its connection. Afterwards, the PV system recharges
the BESS until the SoC approaches 90%. The maximum PV power
is close to 3.1 kW and the BESS recharges in 5 h.

5.4. Effect of changing prediction horizon and number of parameters

The prediction horizon and the number of uncertain parame-
ters affect the eMPC performance. This subsection examines their
effect on the proposed study from the operational point of view.

Fig. 9. Battery power profiles for different prediction horizon (Np).

First, a number of different Np values has been tested with the
same number of uncertain parameters presented in Section 5.1.
All the other parameters and the data set remains unchanged.
Np takes the following values: 3, 12, 24, 36, and 144, which
correspond to 15 min, 1 h, 2 h, 3 h, and 12 h, respectively. Fig. 9
shows the charging and discharging power of the battery for
each of the five Np values considered. The EV is connected at 9
am; thus, the battery proceeds supplies power to the charging
station. There is no difference among the performance for Np = 3,
Np = 12, or Np = 24. However, this power reduces slightly for the
case of Np = 36.

Instead, for Np = 144, the battery supplies only Pbat = 0.5 kW.
Additionally, at the end of the EV’s connection, there is a sudden
reduction of the PV production (Fig. 8), thus, the battery needs to
compensate for the loss of power. In the case of a Np ≤ 12, the
compensation for the quick variation is 1.2 kW. The compensation
is less than 0.8 kW For Np = 24 and Np = 36. However,
this compensation does not occur when Np = 144. After the
EV disconnection, the higher the Np the smoother the charging
power of the battery. For Np = 144, the charging power is
reduced as the battery has not been fully depleted from the first
interaction with the EV. In any case, -charging or discharging-,
the slow control is because the objective function is evaluated
for a longer time. Although the battery shows a slow dynamic, its
charging profile varies with the Np value. A further analysis has
been conducted by varying the number of uncertain parameters
(θ ) and thus the number of constraints. The test is developed for
(a) θ = 3 and (b) θ = 5. The prediction horizon is the same
for both studies and equal to Np = 12. For θ = 3, the main
parameters and the study case are described in Section 5.1. For
θ = 5, adds to the previous study θCO2

and θp. Their bounds and
the additional parameters are in Tables 5 and 6. The data set of
PV production and EV consumption are the same as Section 5.1.
The power profile of the both cases remains the same, and it does
not present any variation under the performed parameters. This
is because θCO2

and θp affects directly on the amount of power
bought from the grid but not the one related to the battery. The
variation of these parameters and its effect on the system are
tested on the real time operation.

5.5. Evaluation of computational performance

The evaluation of the computational operation is performed by
varying the number of uncertain parameters and the prediction
horizon. As first, it is tested for θ = 3 and a Np that varies
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Table 5

Lower and upper bounds of the uncertainties.

Uncertainties Min Max Units

θPV 0 3900 W

θSoC 10 90 %

θEV 0 6700 W

θp 0.03 0.1 e

θCO2
0.3 1 kg

Table 6

Main parameter’s values.

Parameter Value Unit

Γ1 2 e /W

Γ2 2 kg/W

Np 12

Nc 1

from 3 to 144. Afterwards, the analysis is performed for θ = 5
with the same variation of Np as the case before. The number of
regions created, variables, inequality and equality constraints are
summarized in Table 7. Additionally, the computation time and
the size of the file containing the data describing the CRs for each
case are also shown. The increase of the number of parameters
determines an increase of the number of regions. In this case, the
number of CRs does not change with Np. Instead, the computation
time increases as the number of θ and Np increase. On the same
processor mentioned above, it can go from 0.15 s to 2400 s by
only varying θ and Np. However, for θ = 5 and Np = 144, the
solution is infeasible after 12 h of simulation. As the number of
parameters increases, the file’s size where these values are stored
also increases, but it keeps in the order of kB. These files can be
used in any hardware or platform to do the real-time control.
The larger file is obtained when the Np = 144 with a θ = 3,
but it is only 84 kB. It can be easily saved and used by any low
cost platform. To access the file in online optimization only takes
0.019 s. Thus, it did not change with any variation of Np or the
number of θ .

In conclusion, the eMPC parameters affect performance and
the offline optimization computation time. Although the offline
computation time increases with the number of parameters, the
online use of the CRs resulting from the offline optimization of the
eMPC always needs the same computation time. This is because
the online procedure only searches for the specific control laws by
inspecting the CRs according to the system’s current status. This
one represents the significant advantage of eMPC with respect to
a simple MPC.

6. Experimental validation

Two testbeds were used to evaluate the proposed EMS strat-
egy’s control and computing performance. The first testbed
(Testbed 1) is completely based on a Personal Computer (PC),
while the second includes a dSPACE Scalexio (Testbed 2) (Fig. 10).

There are two purposes of this experimental validation. The
first one is to overview the EMS’s performance under the ef-
fect of five uncertain parameters. The uncertainties considered
are θpv , θEV , θSoC , θCO2

and θp. The upper and lower bounds of
these uncertain parameters (Eq. (11)) are listed in Table 5. The
bounds for θp and θCO2

are fixed by considering the historical
data of the electrical system in Italy, referring to the years 2020
and 2021 [22]. The second one is to overview the computing
performance under different hardware.

In both testbeds, the CO2 emissions are calculated by using
the type of power generation given by ENTSO-E along the day.
For comparison, the variation of the price and the CO2 emissions

Fig. 10. Testbed layout (a) Testbed 1, (b) Testbed 2.

are assumed to be equal to the ones presented in Fig. 11 for all
the tests.

Table 6 collects the used values of the factors and the con-
stants involved in the optimization model. The results achieved
by using the two testbeds are described in the following subsec-
tions.

6.1. Testbed 1

The PC used is an Intel i5-8500 processor with a frequency
of 3 GHz and a memory RAM of 16 GB. The eMPC runs in
Matlab/Simulink. It interacts with the charging station through
an Ethernet protocol to set the control signals and to receive
the actual Ppv , PEV , and SoC values. It also receives from ENTSO-
E the prices and type of power generation. In this case, the
communication between the PC and the charging station occurs
every 5 min, the sampling time. The control horizon is equal to
the sampling time (Nc = 5 min) and the prediction horizon is
fixed at three times the Nc , thus at Np = 15 min.

The MPP is run offline to map the CRs. Then, the eMPC op-
erates at every Nc by reading its inputs, accessing the CRs to fix
the optimal values of the control variables, and finally sending
these values of the control signals to the charging station. For
each Nc , the eMPC takes 0.019 s to access the CRs and 2.5 s to
read its actual input values and settle the optimal values of the
control variables of the charging station. The MPP needs 0.34 s of
computing time to determine the 4 CRs.

The power profiles referring to the 1st of July 2021 are shown
in Fig. 12. The EV connects for recharging at 9 am. During the four
hours of charging, the PV array and the BESS feed the charging
station with their maximum power, i.e., 3.3 kW. Afterwards,
when the EV is fully charged, the PV array recharges the BESS
(40 to 90%). The rest of the power comes from the electrical grid.

In this result, it is important to notice that the PV/BESS has a
slow response to the variations of PV production and load due
to the chosen value of the sampling time and Np. Phenomena
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Table 7

Computational performance.

θ Np CR Variables Inequality constraints Equality constraints Time [s] File size [kB]

3 3 4 6 28 4 0.15 2.76

3 12 4 33 154 22 0.605 9

3 36 4 105 490 70 5.15 25

3 144 3 429 2002 286 506.7 84

5 3 4 6 44 6 0.188 4

5 12 6 33 242 22 2.213 10

5 36 6 105 770 70 2400 33

5 144 Infeasible 43200 –

Fig. 11. One day data of (a) Electricity price, (b) CO2 emissions.

occurring on a shorter timescale, thus within two consecutive
Nps, receive a delayed counteraction from the EMS.

6.2. Testbed 2

The second testbed uses dSPACE for implementing reactive
scheduling. The processor board is a DS 6001 equipped with
an Intel i7-6820EQ processor with a frequency of 2.8 GHz. This
processor has four cores and a memory of 4 GB RAM plus 8 GB
of flash memory. The interface communication chosen for the
current application is ETHERNET with a low latency interface.

In testbed 2, the dSPACE communicates with the charging
station through the Ethernet protocol to receive the values of Ppv ,
PEV and SoC at each sampling time and to set the control signals
(Pbat and Pgrid). Additionally, it communicates with ENTSO-E to
get the prices and the type of power generation every hour. As

Fig. 12. Power profile for Testbed 1 (Day 1).

for Testbed 1, the MPP is run offline to get the CRs which are
saved in the dSPACE as a lookup table. The eMPC runs in the
dSPACE platform and evaluates the CRs at every sampling time
with the actual data. For testbed 2, the sampling time chosen is
one second; thus Nc = 1 s, and the prediction horizon is Np = 3
s.

Two days have been chosen to evaluate this configuration’s
performance. On day 1 (7 July 2021), the EV is connected for
recharging in the morning. The PV/BESS and the grid supply
power to the EV. During the day, when the PV production rises,
the BESS reduces its contribution proportionally. As a result, the
BESS’s SoC drops from 90% to 42%, and it is recharged in the
afternoon. On day 2, 8 July 2021, the EV was connected at 4 pm,
during a day characterized by a large PV production variability.
Unlike Testbed 1, thanks to the shorter Nc , the PV/BESS response
is not delayed; thus the fast fluctuations of the PV production
and the EV usage are accounted for properly. The SoC of the BESS
decreases from 90% to 40%. The BESS is not recharging from the
grid at night and remains at 40% until the next day.

6.3. Computing performance on both testbeds

Table 8 summarizes the computing times required by the two
testbeds. In both cases, the mapping of the CRs is performed
offline, on the PC, and only once. The eMPC in any testbeds takes
less than one second as execution time. Thus, regardless of the
testbed considered, this time remains the same. The most signif-
icant difference between the two platforms is the time needed to
communicate with the charging station.

6.4. Analysis of cost and CO2 emissions

To analyze the cost and the CO2 emissions, different values for
Γ1 and Γ2 are explored and evaluated using the data from day 1
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Fig. 13. Power profile for Testbed 2 (Day 1).

Fig. 14. Power profile for Testbed 2 (Day 2).

Table 8

Comparison between Testbed 1 and Testbed 2.

Testbed 1 Testbed 2

MPP 0.34 s 0.34 s

eMPC 0.019 s 0.001 s

Online communication 2.5 s 1 s

Sampling time 300 s 1 s

and day 2. Three specific values are chosen: 1, 1.2, and 1.4 and it
is assumed that Γ1 = Γ2. The results are summarized in Table 9.

The variation of Γ1 and Γ2 affects the charging station’s re-
sponse. If gamma is less than 1, the power from the grid will
be limited, and only PV/BESS, thus not the grid, are allowed
to supply power to the EV (3300 W). This lengthens the EV’s
charging time or the charging process terminates before the full
charge is reached. If gamma is settled at 1.2, the grid delivers a
maximum power of 1557 W from 9 am to 11 am on day 1, and
3300 W in the next 2 h as the electricity price is lower. On day 2,
however, the charging station provides 5283 W, whereas the grid
only provides 1983 W. This is owing to the fact that prices and
CO2 emissions are higher in the afternoon, limiting the amount of
power supplied from the grid. In the case, Γ is greater than 1.4,
the EV can be charged to its maximum capacity of 6900 W and
be fully charged in roughly 4 h for any of the two days tested.

Table 9

Variation of CO2 emissions and price by considering different values of Γ .

Γ1 = Γ2 Parameters Day 1 Day 2

Pgridmax [W] 554 245

Maximum power PV/BESS [W] 3300 3300

1 CO2 [kg] 0.6474 1.199

Price [e ] 0.1001 0.1707

Number of critical regions 5 5

1.2 Pgridmax [W] 1557–3300 W 1983

Maximum power PV/BESS [W] 3300 3300

CO2 [kg] 61.71 44.2121

Price [e ] 11.49 5.9743

Number of critical regions 6 6

1.4 Pgridmax [W] 3700.00 3700.00

Maximum power PV/BESS [W] 3300 3300

CO2 [kg] 91.06 75.8168

Price [e ] 17.12 10.23

Number of critical regions 4 4

6.5. Comparison with traditional method

To show the advantages of the proposed eMPC, a comparison
with a conventional MPC is proposed. The problem formulation
is the same presented in Section 3 for the proposed eMPC. The
constraints and limits of the parameters are also the same. The
uncertainties are defined as part of the constraints with the same
bounds. The MPC, in this case, reads at every sampling time the
actual values of the PV power production, of the BESS SoC , of
the EV power absorption, of the power price, and of the CO2

emissions. Then, it runs the optimization algorithm and calculates
the values of Pbat and Pgrid to settle at every sampling time.
Next, it sends the values of the control variables as outputs to
the charging station. The values Pbat and Pgrid calculated by the
deterministic optimization are the same as the ones from the
eMPC approach. The power profiles equal to the ones presented
in Figs. 13 and 14. Instead, the computation time required by the
optimization at every time step varies from 0.06 to 0.1 s, while
the eMPC approach only requires 0.019 s to access the CRs at each
sampling time (Table 8).

7. Discussion

In this paper, the application of the eMPC to an e-vehicle
charging station based on PV/BESS by accounting for five main
uncertainties is shown. The uncertainties affect: θpv , θSoC , θEV ,
θCO2

, θp. The main advantages by using this approach can be
summarized as follows:

• The general problem formulation assembles to a common
MPC, making it easier to code and to implement for any
application. The MPT toolbox by MATLAB helps to transition
from MPC to a MPP to create the CRs in offline mode.

• The uncertainties are modeled by fixing a range of real
values for each of them. These bounds can be min/max
operation values or forecast errors. In this application, it was
chosen to use bounds characterized by min/max operation
values. This comes in handy, especially for uncertainties that
are difficult to forecast and for which no historical data
is available. For instance, in the current application, the
main uncertainty is the one related to the EV’s connection,
disconnection and power consumption. This uncertainty is
modeled by a range of values between 0 and 7 kW. Also, the
uncertainty of PV production, the price and CO2 emissions
are modeled in the same way. In the case of PV power,
the boundaries allow considering sudden changes of solar
irradiance during the day. For instance, in Trieste, the 2nd of
July 2021, the PV production reduced to 0 in less than 1 min
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in the afternoon due to a cloud passing. Because of this
behavior, the limits for the PV production are set between
0 and 3.3 kW. The modeling of price and CO2 emissions by
using means of a couple of bounds allows considering a wide
range of values.

• The main advantage of using this technique is the compu-
tation time in online mode. eMPC is based on two main
aspects: creating the CRs in offline mode and the rolling con-
trol horizon in online mode. The second one, only evaluates
the CRs saved beforehand. For the evaluation, it only takes
0.019 s to extract the control values from the CRs. Using
other approaches as stochastic-MPC, reported in [10], that
it takes 1.04 s, for a Np = 12, Nc = 3. Plus, it only takes into
account one uncertain parameter. In our case, the number
of uncertainties is 5 and the evaluation is 55 times less than
the cited example. Because the EV can come at any time,
the optimization online has to be fast. Thus, calculating the
control laws beforehand offers a great advantage for this
type of application.

• The control laws can be exported in C, and python language,
making them independent of MATLAB or the MPT toolbox
for the real time control. This helps the porting of the real
time control to any platform. Its use in FPGAs [23] and
chips [14], has been reported, making eMPC suitable for
low-cost platforms.

The main drawbacks of the proposed eMPC technique are sum-
marized as follows:

• The offline computation time and memory usage increase
with the problem’s dimensions. The number of CRs increases
with the number of parameters, constraints, and number of
components. Thus, the offline computation time increases.
Therefore, the proposed approach fits with low dimensional
systems.

• The use of license software to construct the critical regions
as MPT Toolbox and that runs under Matlab framework. The
mathematical approach behind the construction of the CRs
can be complex. Thus, the use of a toolbox or a programming
tool is necessary. This can be a drawback in the case it is
required to reconstruct the CRs.

After having analyzed the advantages and disadvantages of
this approach, it can be stated that eMPC is a good solution
for EMS in the case of nanogrids under the effect of various
uncertainties. The current paper shows the eMPC applicability
in the case of an e-vehicle charging station based on a PV/BESS.
This solution can be reproduced for similar applications at the
distribution level. It also offers a solution for distributed en-
ergy control, as it can provide optimized real-time control for a
prosumer. This approach can be especially applicable for virtual
power plants where two-stage optimization could be necessary,
where an eMPC can develop the low-level optimization at the
side of the prosumer.

8. Conclusions

This paper presents the use of eMPC in EV charging stations
based on PV and BESS, taking into account uncertainties. The
explicit formulation is based on the mapping of CRs by the use
of MPP. The uncertainties considered are: PV production, SoC,
electricity price, CO2 emissions, and the EV consumption. The
algorithm proposed was tested in two different testbeds, one
using a commercial PC and the other using a dSPACE real-time
platform.

The results showed that the eMPC is a good candidate for
the real-time energy management as it can run offline while the

results can be saved in a lookup table. This reduces the online
optimization time when the actual values of the uncertainties are
known. The eMPC should only evaluate the critical regions saved
at the lookup-table and set the new control variables at every
sampling time. The evaluation of the critical regions takes less
than 1 s for any of the two platforms tested. Thus, eMPC could be
used in a low cost platform to run real time energy management.
However, the number of CRs for the current application can grow
exponentially when the prediction horizon increases, affecting
the computation time offline. Besides the electricity price, the
proposed algorithm also takes into account the CO2 emissions due
to the mix energy from the grid as part of the uncertainties and
constraints. Severe limitations in this account would increase the
connection time of the EV to be fully charged.

Further research is necessary taking into account the forecast
of PV production and the EV connection, which will lead to the
variation of Nc and Np along the day.
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Abstract: In this paper, a novel fault detection and classification method for photovoltaic (PV) arrays

is introduced. The method has been developed using a dataset of voltage and current measurements

(I–V curves) which were collected from a small-scale PV system at the RELab, the University of Jijel

(Algeria). Two different machine learning-based algorithms have been used in order to detect and

classify the faults. An Internet of Things-based application has been used in order to send data to the

cloud, while the machine learning codes have been run on a Raspberry Pi 4. A webpage which shows

the results and informs the user about the state of the PV array has also been developed. The results

show the ability and the feasibility of the developed method, which detects and classifies a number of

faults and anomalies (e.g., the accumulation of dust on the PV module surface, permanent shading,

the disconnection of a PV module, and the presence of a short-circuited bypass diode in a PV module)

with a pretty good accuracy (98% for detection and 96% classification).

Keywords: photovoltaic array; machine learning; Internet of Things; fault detection; fault classification

1. Introduction

The International Energy Agency (IEA) reports that at the end of 2020, global pho-
tovoltaic (PV) capacity installations reached 760 GWp [1]. PV monitoring systems are
indispensable for the reliable operation and maintenance activities of an impressive number
of photovoltaic systems. Recently, with the advances in telecommunication technologies,
the Internet of Things (IoT) technology represents a key solution for the design of remote
PV monitoring systems [2]. However, a fault diagnosis technique should be embedded in
the system in order to prevent and isolate any possible fault, which may compromise the
normal operation of a PV installation [3].

With reference to the fault diagnosis methods, a good number of machine learning
(ML) methods have been developed and presented in the literature [3,4]. These have
demonstrated a good ability in the detection and the classification of both common faults,
(e.g., open circuit, short circuit, partial shading, soiling, and degradation) and complex
faults (e.g., multiple faults). In general, ML-based models are trained and tested by
using measured or simulated data (which can be obtained by using MATLAB/Simulink,
(Ver. 2018a, MathWorks: Natick, MA, USA). Only a limited number of works have been
verified experimentally using a real-time implementation of the developed algorithms.
A fault diagnosis system usually includes of a number of tasks such as the detection,
the identification, the classification, and the localization of the faults.

In order to detect a fault occurring in a PV system, the simplest approach consists
of a comparison between the measured and the predicted output powers. There are two
different approaches which are usually used in order to estimate the PV power:

1. The first uses accurate mathematical models which can estimate the produced power
as a function of some parameters, such as the solar irradiance (G), the air temperature
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(T), and the cell temperature (Tc). These models can be implicit or explicit and are
based on the parameters which can be found in the datasheet of the PV modules;

2. The second is based on a data-driven approach. In this case, a dataset of a number of
parameters is used in order to estimate the produced power.

With reference to the identification and classification of the faults, these can be per-
formed by solving a binary classification and multiclass problem using ML techniques [5–7]
or conventional methods. These latter are known as conventional methods and are usually
used in order to detect simple faults which are not associated with any other fault. Thus,
the PV fault classification and identification consists in the solution of a multiclass problem.

In the literature, there are only a few recent works regarding the fault localization
in PV systems [8–10], and this topic still represents an important challenge in the field,
especially for large-scale PV plants [11].

A low-cost PV monitoring system based on the Internet of Things (IoT) technique
has been developed in Ref. [12]. Here, the monitored data were the currents and the
voltages of the PV array, as well as the environmental data (T and G). The monitoring
system was developed using an Arduino Mega 2560 microcontroller (2005, the Interaction
Design Institute Ivrea, Milano, Italy). A simple fault detection and identification procedure
has been described in Ref. [13] for the detection and identification of four types of faults
occurring in a PV string (permanent shading, soiling/deposit of dust, short-circuited PV
modules, and disconnected PV modules). However, the microcontroller used in this study
was not suitable for the fault classification based on the ML methods. This was due to
the limited resources of the device. In this work, we aim at showing that a Raspberry Pi
4 microprocessor (2012, Raspberry Pi Foundation, Cambridge, UK) can overcome this type
of problem.

In the literature, there are already a certain number of papers where the Raspberry
Pi has been used for the development of an IoT-based technique for the monitoring of
PV systems [14–17]. However, only in a small number of works has this microprocessor
been used in the field of automatic PV fault diagnosis. Thus, the main contribution of
this paper is the development of a fast and accurate method for the online automatic
PV fault detection and classification. The developed method allows the experimental
verification of the capability of ML algorithms to detect and classify the faults occurring in
PV modules, and to monitor the operation of a PV array, thanks to the use of a webpage
which informs the users about the state of their installations. The investigated faults are:
the soiling/deposit of dust, permanent shading, the short-circuited bypass diode in PV
modules, and disconnected PV modules.

Soiling mainly occurs due to environmental conditions, which depend on the loca-
tion where the PV system is installed. Permanent shading is caused by the presence of
buildings, trees, etc. Short-circuited bypass diodes may be caused by many factors, such
as overheating, corrosion, manufacturing problems, bad connections, etc. Open-circuited
PV modules are mainly due to the breaking down of panel-panel cables or connections,
bypass diode issues, bad connections, etc.

The paper is organized as follows: Section 2 provides the description of the system and
of the database used to develop the fault detection method. The proposed fault detection
method based on machine leaning algorithms is described in Section 3, while the results
and the discussion are reported in Section 4. Finally, the conclusion and perspectives are
provided in Section 5.

2. Photovoltaic Array Description and Dataset

The PV array considered in this study consists of three parallel-connected PV modules
installed at the University of Jijel (Algeria). Figure 1 shows the PV modules used in this
study [12]. The considered faults are: (a) soiling/dust deposit; (b) permanent shading;
(c) open-circuit (disconnected of one PV module); and (d) short-circuit (short circuited
bypass diode in a PV module). The “Prova I-V tracer” (See Table A1) is used to collect the
data (Figure 1e), while the faults are labeled manually. The data (I–V curves) were collected
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during different climatic conditions and under normal and abnormal circumstances (faulty
PV array). The PV module specifications are listed in Table 1. −

  

 

(a) (b) 

  
(c) (d) (e) 

Figure 1. (a) Dust deposit on the PV modules surface, (b) shading (permeant shadow), (c) open circuited PV module (one

PV module disconnected), (d) short-circuited bypass diode in a PV module, and (e) the used measurement instrument

(“Prova 210 I–V tracer”).

Table 1. PV module specifications.

Power (Pmp) 121.4 W
Maximum voltage (Vmp) 17.1 V
Maximum current (Imp) 7.11 A
Short-circuit current (Isc) 7.98 A
Open circuit voltage (Voc) 21.2 V

Maximum bypass diode current 8.1 A
Current Temperature Coefficient +0.054%/◦C

Voltage Temperature Coefficient %/◦C −0.35%/◦C

Figure 2 shows an example of the I–V curves measured during the experiments.
A number of measurements have been carried out under different working conditions.
In total, we have collected 246 I–V curves from which we could extract the main features
of the PV array, such as: the short circuit current (Isc), the open circuit voltage (Voc),
the current at maximum power point (Imp), the voltage at the maximum power point
(Vmp), the power at the maximum power point (Pmp), and the fill factor (FF). While
preparing the dataset, missed data usually occur and they are automatically ignored from
the dataset (CSV files), and redundant features have also been removed.
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Figure 2. Some of the I-V curves measured for different faults under various working conditions: (a) dust deposit on the

PV array surface; (b) open circuit (one PV module disconnected); (c) shading (permanent shadow); (d) short circuited

(short-circuited bypass diode in one PV module); (e) normal operations (no fault).

3. The Proposed Method

The block diagram of the proposed method is shown in Figure 3. There are three main
blocks:

Block #1. This block contains the PV array together with the sensors used to measure the
PV current, the PV voltage, the solar irradiance, and the cell temperature every
thirty minutes.

Block #2. This block comprises the controller, which is based on a Python (version 3.8,
Python Software Foundation: Wilmington, DE, USA) code implemented into the
Raspberry Pi 4. The code contains the fault detection program, which is based on
a ML method (decision tree) [18], an explicit I-V model with features extraction
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parameters [19], and a fault classification method based on an ensemble method
(random forest) [18].

Block #3. This block includes the webpage application which has been designed for the
remote visualization of the stored data, and to notify the users about the status
of the PV array.

 

Figure 3. Block diagram of the proposed method.

The code performs four main steps which can be described as follows:

Step 1: import the libraries and the functions from Python.
Step 2: load the dataset and split it into the training and the testing subsets.
Step 3: select the ML algorithm and use the k-fold cross validation technique.
Step 4: fit the ML model and predict the results.

A large number of ML and ensemble techniques (e.g., Naïve Bayes, decision tree, k-
nearest neighbors, random forest, neural networks, boosting, bagging, CatBoost, LightGBM,
XGboost, etc.) are available in the literature. In this study, a decision tree (DT) algorithm
has been used for the detection of faults, while a random forest algorithm (RF) has been
used for their classification.

It is assumed that only one fault at time can happen during the measurement process.
Multiple faults and faults with similar symptoms are not considered in this study.

With reference to Figure 4, the I-V explicit model described in Ref. [19] is used in
order to estimate the I-V curve based on the values of G and T, while a simple algorithm is
employed to extract the main features of the I-V curve (Voc, Isc, Vmp, Imp, Pmp, and FF).

The detection of faults in PV arrays can be modeled as a binary classification problem.
Among the different available ML methods, the decision tree algorithm has been chosen
in order to detect the faulty PV module because of its simplicity. Concerning the PV fault
classification, which is a multiclass classification problem, an ensemble learning method
has been chosen, the random forest algorithm.

3.1. Programming Language

With reference to Figure 5, the fault detection and classification models are im-
plemented online using Google Colab https://colab.research.google.com (accessed on
23 May 2018), a cloud platform that provides Jupyter netbook https://jupyter.org/
(accessed on 1 February 2015) services. Google Drive https://www.google.com/drive/
(accessed on 1 February 2015) was used in order to read the dataset.

https://colab.research.google.com
https://jupyter.org/
https://www.google.com/drive/
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(a) 

(b) 

Figure 4. (a) An example of the I-V and P-V curves obtained using the explicit model, (b) extracted features Vmp, Imp, FF,

Isc, Voc, and Pmp.

Accuracy %   ∑ CM i, i∑ ∑ CM i, j   100
Precision %   CM i, i∑ CM j, i   100

Sensitivity %   CM i, i∑ CM i, j   100
𝐹1 score %   2

Misclassified rate %   100  accuracy

Figure 5. Google Colab interface used for developing and running the proposed method.
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As an example, Appendix B shows the main functions used to develop both classifiers.

3.2. Performance Metrics

In order to evaluate the performance of the developed classifiers, the well-known
confusion matrix (CM) method has been used in order to calculate the accuracy, the
precision, the sensitivity, the F-score, and the misclassification rate, which are defined
as follows:

Accuracy (%) =
∑i CM(i, i)

∑i ∑j CM(i, j)
× 100 (1)

Precisioni(%) =
CM(i, i)

∑j CM(j, i)
× 100 (2)

Sensitivityi(%) =
CM(i, i)

∑j CM(i, j)
× 100 (3)

F1 − score (%) = 2
(sensitivity × Recall)

(sensitivity + Precision)
× 100 (4)

Misclassified rate (%) = 100 − accuracy (5)

4. Experimental Implementation and Results

A K-fold cross validation technique has been used to resample the dataset without
replacement. The advantage of this technique is that each example is used both for the
training and for the validation exactly once. This yields a lower variance estimate of the
model performance than the holdout method. Each classifier (DT and RF) accepts as input
G, T, and the extract I-V features (Isc, Voc, Imp, Vmp, Pmp, and FF).

In order to develop the classifiers (binary classification for the detection and multiclass
classification for the fault classification), a number of experiments have been carried out
by tuning the hyper-parameters for both the classifiers’ decision tree and the random
forest algorithms. The adjusted random forest parameters are: max_depth, max_features,
n_estimators, and random state. The adjusted decision tree parameters are: criterion,
max_depth, and random_state.

A cross validation method has been used to evaluate both classifiers. This is a resam-
pling procedure used to evaluate ML models on a limited data sample [20].

4.1. Fault Detection Performance

The cross-validation accuracy scores for K = 10 are given in Figure 6.
The error metrics are listed in Table 2. The accuracy is 98% and the misclassified rate

is 2%. With reference to the confusion matrix shown in Figure 7, in the first row, thirteen
normal cases have been classified correctly, while in the second row, thirty-two are correctly
classified and only one fault is incorrectly classified as a normal case.

Table 2. Error metrics: precision, recall, F1-score, accuracy, and misclassified rate for the fault detection method using the

decision tree learning algorithm (with tuned parameters).

ML Classifier Tuned Parameters: Criterion = gini, max_depth = 3 and random_state = 40

Precision
(%)

Sensitivity
(%)

F1-Core (%)
Classification
Accuracy (%)

Misclassified Rate (%)

Normal 93 100 95
98 2

Fault 100 97 98
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Figure 6. Cross validation accuracy scores for K = 10 (fault detection).

 

 

Figure 7. Confusion matrix: fault detection using the decision tree algorithm.

The decision tree results are shown in Figure 8.
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(a) (b) 

 Figure 8. Decision tree model: (a) decision tree text and (b) decision tree diagram of the model.

4.2. Fault Classification Performance

The cross-validation accuracy scores for K = 10 is given in Figure 9.

 

Figure 9. Cross validation accuracy scores for K = 10 (fault classification).

The error metrics are calculated and listed in Table 3. The accuracy is 96% and the
misclassified rate is 4%. With reference to the confusion matrix plotted in Figure 10, in the
first row, which refers to the fault class 0, nine samples are correctly classified and only
one element is not; the sensitivity is 9/10 (90%). In the second row, all the eight samples
are correctly classified, and the sensitivity is 8/8 (100%). In the third row, 20 samples are
correctly classified, while one is misclassified into class 1; the sensitivity is 20/21 (95%).
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With reference to the last row, all eleven samples are correctly classified, and the sensitivity
is 11/11 (100%).

Table 3. Error metrics: precision, recall, F1-score, accuracy, and misclassified rate for fault classification using random forest

ensemble learning algorithm (with tuned parameters).

ML Classifier Parameters max_dept h = 5, max_features = sqrt, n_estimators = 300, and random_state = 42

Fault Classes Precision (%) Sensitivity (%) F1-Score (%)
Classification
Accuracy (%)

Misclassified
Rate (%)

Class {0}: dust deposit on the
PV array surface

100 90 95

96 4
Class {1}: short-circuited bypass
diode in one PV module

80 100 89

Class {2}: permanent shadow 100 95 98
Class {3}: disconnected one
PV module

100 100 100

 

−

Figure 10. Confusion matrix: fault classification using random forest algorithm.

With reference to the first column of the matrix, all the nine samples are correctly
classified, and the precision is 9/9 (100%). In the second column, eight samples are correctly
classified, while two are misclassified into class 0 and class 1 respectively; the precision
is 8/10 (80%). In the third and the last columns, all the twenty and eleven samples are
well classified so that the precisions are 20/20 (100%) and 11/11 (100%), respectively.
The F1-score ranges between 89% and 100%. Some of the faults (e.g., class 3, class 2,
and class 0) are very well classified, having a precision of 100%. Nevertheless, class 1 faults
are characterized by a precision of 80%, and that is acceptable. Globally, the results listed
in Table 4 are quite satisfactory.

Table 4. Component specification and costs.

Components Specification Cost (Dollars)

Raspberry Pi 4 Cortex-A72 (ARMv8), 4 Go 85
Current sensor ACS712 30 A 6

Voltage sensor 25 V 4
Temperature sensor Type K Max6675 −20 ◦C + 80 ◦C 5

Solar irradiance (Silicon irradiance sensor) 0–1200 W/m2 50
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4.3. Experimental Implementation

Once the detection and classification algorithms have been verified, these have been
implemented into the Raspberry Pi 4 for a real time verification. The WiFi module embed-
ded into the Raspberry Pi 4 has been used in order to send data to the cloud.

The following steps represent the main procedure implemented into the microprocessor.

Step 1: read the data (G, T, Ipv, and Vpv) by the Raspberry Pi 4.
Step 2: call the explicit model to estimate the I-V curve.
Step 3: call the features extraction algorithm to calculate Isc, Voc, Imp, Vmp, FF, and Pmp.
Step 4: call the fault detection procedure, and based on the calculated features, display the
results on the webpage and go to Step 1 if the PV system works properly, otherwise go to
the next Step 5.
Step 5: call the fault classification procedure and identify the nature of the fault.
Step 6: display the results on the webpage and notify the user by indicating the type
of fault.

Figure 11 shows the basic experimental setup of the prototype where the Raspberry
Pi 4 is used.

 
Figure 11. 

ML based fault classification code 

Max6675 sensor 

Voltage and current sensors 

Raspberry Pi 4 

Reference solar cell 

Figure 11. Experimental setup at the laboratory level: Raspberry Pi 4, sensors, PV modules, and data-acquisition system.

The specification and the cost of the main components used in the experiment are
listed in Table 4. The total cost is USD 150.

In order to test the method, artificial shading has been created on the field by partially
covering one of the PV modules. Figure 12 shows the corresponding I-V curve, the extracted
parameters, the current, the voltage, the cell temperature, and the solar irradiance. The state
of the system is also displayed in the webpage. The results show clearly that the method is
able to detect and correctly classify the fault that occurred on the investigated PV array
(type of fault: class #2).
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Figure 12. The webpage with the monitored data and the state of the system (https://solar-system.w3spaces.com/ (accessed

on 20 May 2021)).

5. Conclusions

In this work, a machine learning-based fault diagnosis method for photovoltaic arrays
has been developed and experimentally verified. A Python code, including the decision tree,
the random forest, the explicit model of the I–V curve, and the extraction parameters algo-
rithms were written to a Raspberry Pi 4 microprocessor suitable for real-time applications.

The experimental results showed the feasibility of the developed method to detect
and classify the common faults occurring in PV arrays. The designed prototype can rapidly
detect and classify the examined faults with a good accuracy (98% for the detection and
96% for the classification).

It should be pointed out that the data should be periodically updated in order to keep
the classifier working effectively and avoiding false alarms. In addition, multiple PV faults
have not been considered in this study, which remain an open challenge.

This work can be further improved and extended for fault detection in photovoltaic
systems, including DC-DC converters, batteries, and DC-AC inverters. The webpage
designed could be also enhanced by posting more information about the PV installation,
as well as to notify users by e-mail or SMS.
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Appendix A

Table A1. Prova I-V tracer specifications.

Range (60 V/12A) Resolution Accuracy

DC Voltage Measurement

0–10 V 0.001 V ±1% ± (1% of Vopen ± 0.1 V)
10–60 V 0.01 V ±1% ± (1% of Vopen ± 0.1V)

DC Current Measurement

0.01–10 A 1 mA ±1% ± (1% of Ishort ± 9 mA)
10–12 A 1 mA ±1% ± (1% of Ishort ± 9 mA)

Appendix B

Main code (DT and RF functions)

from sklearn.ensemble import RandomForestClassifier

from sklearn.tree import DecisionTreeClassifier

from sklearn.pipeline import make_pipeline

In_train, In_test, Out_train, Out_test = train_test_split(InD, OutD,

test_size=0.20,random_state=42)

Classifier_RF_Model = make_pipeline(StandardScaler(),

RandomForestClassifier(n_estimators=300, max_depth=5))

#Classifier_DT_Model = make_pipeline(StandardScaler(),

DecisionTreeClassifier(max_depth=5, random_state=40))

classifier.fit(In_train, Out_train)

Out_pred = classifier.predict(In_test)
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