

Joint action plan for a sustainable airport and port management

Final Version of 18/02/2021

Deliverable Number D.3.3.2.

European Regional Development Fund

https://www.italy-croatia.eu/web/adrigreen

Project Acronym	ADRIGREEN
Project ID Number	10044741
Project Title	Green and intermodal solutions for Adriatic airports and
	ports
Specific objective	4.1
Work Package Number	3
Work Package Title	Identification of innovative solutions and action plan
	definitions
Activity Number	definitions 3
Activity Number Activity Title	
·	3
Activity Title	3 Joint action plan definitions
Activity Title Partner in Charge	3 Joint action plan definitions Marche Polytechnic University

Index

Introduction
Steps for the pilot actions
Pilot actions for Adrigreen airports15
Strengths, Weakness, Opportunities, and Threats analysis of Adrigreen airports
Water management
Waste management
Energy management
Electricity
Fossil fuel consumption of company operated vehicles
Pilot actions for Adrigreen ports
Strengths, Weaknesses, Opportunities, and Threats analysis of Adrigreen ports
Energy management54
Water management
Waste management
References

Index of figures

Figure 1 Sequence to define and evaluate pilot action initiatives.
Figure 2 Disparities in greenhouse gases emissions deriving from the difference between airports' yearly mean and overall mean water consumption per passenger in the time period 2016 2018.
Figure 3 Yearly savings/extra budgets deriving from water consumption below/above the Adrigreen airports' average based on Adrigreen airports' overall minimum cost of water (2.4€/m3) in the time period 2016–2018
Figure 4 Yearly savings/extra budgets deriving from water consumption below/above the Adrigreen airports' average based on Adrigreen airports' overall mean cost of water (3.0€/m3) in the time period 2016–2018. 24
Figure 5 Yearly savings/extra budgets deriving from water consumption below/above the Adrigreen airports' average based on Adrigreen airports' overall maximum cost of water (3.8€/m3) in the time period 2016–201825
Figure 6 Disparities in greenhouse gases emissions related to the difference between airports' yearly mean and overall mean fuel consumption for heating buildings in the time period 2016– 2018
Figure 7 Disparities in budgets related to differences between airports' yearly mean and the overall mean fuel consumption for heating buildings based on the Adrigreen airports' overall mean cost of diesel fuel (1.1€/l), heating oil (0.6€/l), and natural gas (0.64€/m3) in the time period 2016–2018.
Figure 8 Disparities in budgets related to differences between airports' yearly mean and the overall mean diesel fuel consumption for heating buildings. Amounts are based on Adrigreen airports' overall mean cost of diesel fuel (1.1€/I) in the time period 2016–2018
Figure 9 Disparities in budgets related to differences between airports' yearly mean and the overall mean heating oil consumption for heating buildings. Amounts are based on Adrigreen airports' overall mean cost of heating oil (0.6€/I). Time range is 2016–2018
Figure 10 Disparities in budgets related to differences between airports' yearly mean and the overall mean heating oil consumption for heating buildings. Amounts are based on Adrigreen airports' overall mean cost of natural gas (0.64€/m3) in the time period 2016–2018 34
Figure 11 Departures in greenhouse gases emissions related to the difference between airports' yearly mean and overall mean electricity consumption in the time period 2016 – 2018 35
Figure 12 Yearly savings/extra costs deriving from electricity consumption below/above the Adrigreen airports' consumption benchmark based on Adrigreen airports' overall minimum price (0.13€/kWh) in the time period 2016–2018
Figure 13 Yearly savings/extra costs deriving from electricity consumption below/above the Adrigreen airports' consumption benchmark based on Adrigreen airports' overall mean price (0.15€/kWh) in the time period 2016–2018
Figure 14 Yearly savings/extra costs deriving from electricity consumption below/above the Adrigreen airports' consumption benchmark based on Adrigreen airports' overall maximum price (0.16€/kWh) in the time period 2016–2018
Figure 15 Disparities in greenhouse gases emissions related to the difference between airports yearly mean and overall mean fuel consumption for company operated vehicles in the time period 2016–2018

- Figure 17 Yearly savings/extra costs deriving from company operated vehicles diesel fuel consumption below/above the Adrigreen airports' consumption benchmark based on Adrigreen airports' overall mean cost of diesel fuel (1.12€/l) in the time period 2016–2018.

- Figure 22 Yearly savings/extra budgets deriving from electricity consumption below/above the Adrigreen ports' consumption benchmark based on Adrigreen ports' specific maximum cost in the time period 2016–2018: P1=0.091€/kWh, P2=0.041€/kWh, P3=0.070€/kWh...58

Index of tables

Table 1 Numerical indexes recapping the status of implementation of a specific activity at specific port/airport. 11
Table2Numericalindexesrecappingpotentialpositive/negativesynergieswithStrengths/Weaknesses of a specific action at specific port/airport
Table 3 Numerical indexes recapping potential positive/negative synergies with Opportunities/Threats of a specific activity at specific port/airport
Table 4 Status and applicability of actions to reduce the water footprint of the airport infrastructureand potential indicators.23
Table 5 Airport reference case studies for actions aimed at reducing the water footprint. 25
Table 6 Status and applicability of actions related to waste management and potential indicators. 27
Table 7 Airport reference case studies for actions aimed at improving waste management. 28
Table 8 Actions aimed at reducing energy consumption and potential indicators. 30
Table 9 Airport reference case studies for actions aimed at decreasing energy consumption
Table 10 Actions related to electricity consumption and potential indicators. 37
Table 11 Airport reference case studies for actions aimed at decreasing the environmental footprintof electricity consumption
Table 12 Share of (51) EU28 and European Free Trade Association airports implementing environmental impact mitigation actions related to vehicle fleet.43
Table 13 Status and applicability of actions related to decrease/decarbonize fossil fuel consumptionof company operated vehicles and potential indicators.44
Table 14 Airport reference case studies for actions aimed at decreasing the fossil fuel consumption.
Table 15 Actions related to electricity consumption and potential indicators
Table 16 Port reference case studies for actions aimed at decreasing the carbon footprint of electricity consumption
Table 17 Actions to reduce the water footprint and consumption of the port infrastructures and related indicators.62
Table 18 Reference case studies for actions aimed at decreasing the footprint of water consumptionat Adrigreen Ports.65
Table 19 Actions related to improve waste management of the port infrastructures and related indicators
Table 20 Reference case studies for actions aimed at decreasing the footprint of waste production atport infrastructures.68

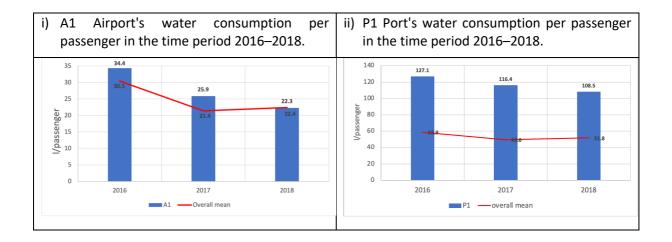
Introduction

The present report is the third deliverable of WP3 of the Green and Intermodal Solutions for Adriatic Ports and Airports "ADRIGREEN" project. ADRIGREEN is a project under the INTERREG V-A Italy Croatia CBC Programme 2014-2020.

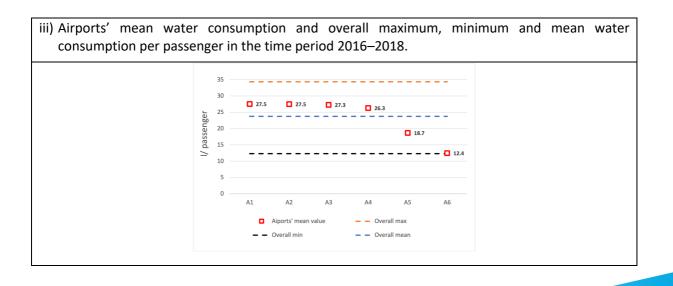
With the first deliverable under WP3, the Adrigreen team of Marche Polytechnic University collected and analyzed replicable operational and technological solutions aimed at improving intermodal connections and reducing the environmental impact of airports and ports.

A literature review was performed about existing solutions and case studies implemented at airports and ports. A Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis was performed for the existing solutions.

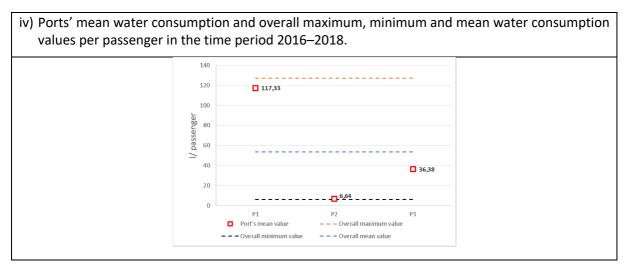
Whenever relevant to the present report, the information related to the SWOT-strategies section of the first deliverable of WP3 were considered for the evaluation of Strengths/Weaknesses, and Opportunities/Threats of the action. The general/literature SWOT approach applies to the structure of the SWOT-strategies section of the present report, the main general rules being the ones that follow.


- "MATCH Strengths and Opportunities". Use internal Strengths to take advantage of external Opportunities.
- "OPPOSE Strengths to Threats". Use internal Strengths to minimize external Threats.
- "OPPOSE Opportunities to Weaknesses". Improve internal Weaknesses by taking advantage of external Opportunities.
- "DISRUPT Weaknesses and Threats". Work to eliminate internal Weaknesses especially to avoid external Threats.
- "CONVERT Weaknesses into Strengths" Apply best practices aiming at turning Weaknesses into Strengths.
- "AVOID converting Strengths into Weaknesses". Prevent wrong approaches that may convert Strengths into Weaknesses.
- "CONVERT Threats into Opportunities". Move towards strategic directions that may convert Threats into Opportunities (scenarios turning Threats into Opportunities)
- "AVOID converting Opportunities into Threats". Prevent inadequate planning that may convert Opportunities into Threats (scenarios turning Opportunities into Threats).

Within the second deliverable under WP3, partners have found the results of an environmental assessment based on the data collected by the Adrigreen airports and ports according to our



guidance. Data analysis involved the time period 2016–2018 and it was possible to perform both an internal and an external benchmarking for the Adrigreen partners that provided all the data encompassing the entire time period.


Through our internal benchmarking, an airport/port can now analyze its own performance over time. For example, the second deliverable reported time series of several performance indicators for each Adrigreen partner (Figs. i - ii). We wish to stress that only few partners were apparently aware of their performances. In some cases they experienced severe difficulties even to find the relevant information such as bills, counts etc.

Through our external benchmarking, an airport/port can now compare its own performance against other partners. For example, the second deliverable reported comparisons between the performance indicators for each Adrigreen partner and the overall minimum, maximum and mean values (Figs. iii – iv).

Adrigreen partners provided basic information to perform a SWOT analysis dedicated to the possible actions to be implemented. We would like to stress the fact that A4 airport was not supposed to carry out data collection for environmental analysis and they did not receive any funding for this task. However, they voluntarily performed environmental data collection to help the Adrigreen team of Marche Polytechnic University. We really appreciated it and we would like to thank the Adrigreen team team of A4 Airport once more for their support.

For the environmental assessment of the Adrigreen airports and ports reported in the second deliverable, the investigated topics were:

- water consumption,
- waste management,
- energy consumption,
- greenhouse gases emissions deriving from the above activities,
- multimodality,
- noise pollution.

Within this document, a series of pilot actions is presented based on the information collected in the first deliverable and on the environmental benchmarking reported within the second deliverable. As a general rule, we scrutinized relevant pilot actions belonging to two groups.

The first group is made of all the proposals presented within the first deliverable i.e., the possible applicable pilot actions collected within the relevant literature and/or case studies. The pilot actions were chosen according to their applicability within the scope of the project following the SWOT analysis and the results of environmental assessment/benchmarking. Due to such benchmarking and SWOT analysis, a single pilot action may be suitable either to all the ports and/or the airports or to some of them only.

The second group is made of pilot actions deriving directly from the scrutiny of environmental assessment performed over Adrigreen port/airports as reported in deliverable two, including the related SWOT analysis. In this case, indicators showed how one or more partners "behave" better in a specific environmental field. A subsequent analysis let us understand the local actions implemented so to reach such results and to identify the proper pilot actions to be realized within Adrigreen project. Quite obviously such actions are applicable to some of the partners only.

The environmental analysis performed outlined that the environmental footprint of the Adrigreen airports and ports could be reduced (thus improved) by applying actions regarding:

- water consumption,
- waste management,
- energy consumption,
- greenhouse gases emissions deriving from the activities listed above.

For water and energy consumption, the performances of Adrigreen ports and airports are compared with the data calculated for the other Adrigreen partners and presented in terms of CO2 emissions and budget. In fact, we considered useful to highlight both the possible greenhouse gases abatements and the possible economic benefits in terms of budget reduction.

Greenhouse gases emissions deriving from airport and port infrastructures can also be considered as a general proxy variable for airborne pollutants emissions. As a very general rule, lower greenhouse gases emissions will also mean lower airborne pollutant emissions. Therefore, actions that result in reducing the carbon footprint of a given activity should also reduce the global and/or local emissions of air pollutants. For example, an action that cuts local fuel consumption (e.g., replacing fuel-driven vehicles with electric ones) has a positive impact on both greenhouse gas emissions (globally reducing them) and air pollutant emissions (virtually zeroing them locally and reducing them globally). However, care must be taken when analyzing the global and local impacts of an action since this rule is not always so straightforward.

The proposed actions are summarized in tables, each row outlining the following information:

- general action,
- specific short-term/long term action,
- metrics,
- applicability/status at each Adrigreen airport/port
- relationship with Strengths/Weaknesses at each Adrigreen airport/port
- relationship with Opportunities/Threats at each Adrigreen airport/port.

Most short-term initiatives require short/medium start-up times, minimal implementation and design complexity, and relatively low costs. All permission procedures can be usually managed directly by the airport/port authority or by the stakeholders involved. Long-term initiatives are characterized by prolonged start-up times and high complexity of design and implementation. Authorization procedures will mainly depend on local, regional, or national authorities/agencies.

For the applicability/status of each specific action, a range of values from 0 to 3 was considered as depicted in Table 1.

APPLICABILITY/STATUS	DESCRIPTION	
0	NOT APPLICABLE OR NOT SUGGESTED	
1	APPLICABLE AND SUGGESTED	
2	PARTIALLY IMPLEMENTED	
3	IMPLEMENTED	

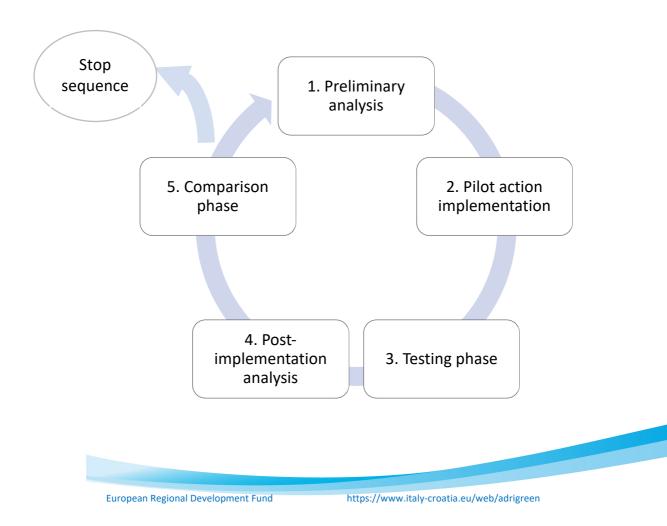
Table 1 Numerical indexes recapping the status of implementation of a specific activity at specific port/airport.

For the columns of the tables associated to the SWOT analysis, the potential interactions of each specific action with the Strengths/Weaknesses and Opportunities/Threats, highlighted by the Adrigreen partners, are summarised through numerical indexes. A4 Airport voluntarily took part to WP3 but did not provide SWOT analysis. Therefore, the Strengths/Weaknesses, and Opportunities/Threats columns were not filled for A4 Airport. For the Strengths/Weaknesses and for Opportunities/Threats, a range of values from -2 to 2 was considered as depicted in Table 2 and Table 3.

STRENGTHS/WEAKNESSES INDEX	DESCRIPTION	
-2	The implementation of the specific action is expected to have minor or negative influence on the Strengths whilst boosting several Weaknesses of the airport/port.	
-1	The implementation of the specific action is expected to have minor or none influence on the Strengths whilst boosting one or more Weaknesses of the airport/port.	
0	The implementation of the specific action is expected either not to interact with Strengths and Weaknesses of the airport/port or to balance the related effects.	
1	The implementation of the specific action is expected to boost one or more Strengths whilst having minor/no influence on the Weaknesses of the airport/port.	
2	The implementation of the specific action is expected to boost several Strengths whilst having minor or positive influence on the Weaknesses of the airport/port.	

Table 2 Numerical indexes recapping potential positive/negative synergies with Strengths/Weaknesses of a specific action at specific port/airport.

OPPORTUNITIES/THREATS INDEX	DESCRIPTION	
-2	The implementation of the specific action is expected to have minor or negative influence on the Opportunities whilst boosting several Threats of the airport/port.	
-1	The implementation of the specific action is expected to have minor or none influence on the Opportunities whilst boosting one or more Threats of the airport/port.	
0	The implementation of the specific action is expected either not to interact with Opportunities and Threats of the airport/port or to balance the related effects.	
1	The implementation of the specific action is expected to boost one or more Opportunities whilst having minor/no influence on the Threats of the airport/port.	
2	The implementation of the specific action is expected to boost several Opportunities whilst having minor or positive influence on the Threats of the airport/port.	


Table 3 Numerical indexes recapping potential positive/negative synergies with Opportunities/Threats of a specific activity at specific port/airport.

Steps for the pilot actions

- 1. Driving factors evaluated through a qualitative analysis such as a SWOT analysis and/or data collection for the assessment of the consumption trend and the environmental performance preceding the pilot action. Definition of key performance indicators.
- 2. Identification of the pilot action to implement based either on the results of Benchmarking within Adrigreen partners or upon case studies reported by literature upon similar airport/port infrastructures.
- 3. Testing phase and collection of qualitative and/or quantitative data.
- 4. A qualitative analysis such as SWOT analysis and/or collection of data for the assessment of the consumption trend and the environmental performance resulting from the implementation of the pilot action. Evaluation of key performance indicators. Evaluation of the performance of the airport/ port infrastructure over time for internal benchmarking.
- 5. Comparison between step 1 and step 4 qualitative and/or quantitative data. If the desired performance levels have been reached, the sequence ends otherwise to reach the objectives it restarts from step 1.

Figure 1 Sequence to define and evaluate pilot action initiatives.

The main sections of this report cover the following issues:

- 1. Pilot actions for Adrigreen airports
- 2. Pilot actions for Adrigreen ports

Pilot actions for Adrigreen airports

Strengths, Weakness, Opportunities, and Threats analysis of Adrigreen airports

All the airports consider the location as Strength. Namely, A2, A3, A5, and A6 highlighted the proximity of the airports to the respective main urban centres while A1 highlighted its position within the region.

A common Strength of A1, A5, and A6 is their minor environmental disturbance, A5 and A6 also reporting good communication and coordination with the public administrations and other stakeholders involved in the management of environmental issues.

Another Strength of A5 and A6 is public transport, with frequent train calls for A5 and frequent bus calls for A6.

A1, A3, and A6 have tourist attractions nearby and serve a significant number of tourists.

Both A1 and A2 report likelihood of infrastructure enlargement. The current infrastructure of A2 was designed to serve about 3 to 5 times the present passenger traffic.

Traffic congestion of the access roads is a common Weakness of A5 and A6 and a potential Weakness of A2. Seasonality of passenger traffic is a Weakness both for A1 and A6 airports, whereas incoming touristic activities are not well developed at A3 Airport.

A2 Airport reported limited public-transport connections. Similarly, A5 Airport reported insufficient rail connections to some destinations of the area and no direct connection with the nearby port.

Investments for enhancing public transportation may represent a Threat for A3 and A6 airports. Urban planning and ownership of surrounding properties may pose a Threat to the potential expansion of A1 and A2. Coordination with involved stakeholder may pose a Threat to development of integrated tariff system and information at A5 Airport.

'A1' Airport – SWOT analysis

Strengths		Weaknesses	
-	Fully operational airport;		
-	Minor environmental disturbances;	- Absence of domicile carrier;	
-	Land available for expansion;	- Seasonal international traffic;	
-	Geographical location in the region;	- A small amount of cargo;	
-	Regional state support;	- Limited population that would increase the	
-	A small number of competitive airports	output potential;	
	for the region;	 Marketing activities (tour operators) generally reach the norm in the "main" season; 	
-	Large volume of receptive tourism;		
-	Dependence on "external" gross domestic product (GDP) growth.	- Dependence on "external" GDP growth.	
Opportunities			
	Opportunities	Threats	
-	Opportunities Potential for GDP growth dependent on GDP;	Threats	
-	Potential for GDP growth dependent on	- Poor development in the tourism sector will	
-	Potential for GDP growth dependent on GDP;		
	Potential for GDP growth dependent on GDP; Attracting new airlines (airline marketing); Introduction of cruise and summer	 Poor development in the tourism sector will reduce the window of Opportunity for airport 	

'A2' Airport– SWOT analysis

Strengths		Weaknesses		
-	The airport is designed to serve up to 1 million passengers in its current configuration; A quite large airport area with possibilities of expansion both in terms of passenger traffic, but especially cargo traffic; Proximity to the main urban centres of two different provinces.	 Road connections are barely sufficient to manage current airport traffic, an increase in both passenger and cargo traffic must necessarily re-evaluate the access points to the infrastructure; Collective public transport to connect the airport to nearby cities is still limited; Incoming traffic is much higher than outcoming. 		
	Opportunities	Threats		
-	The nearby area attract several forms of tourism (sports, congress, seaside, archaeological, food and wine and shopping); The development of regional tourism projects of all kinds, especially with the countries of Eastern and Northern Europe, would increase airport traffic; Possible enhancement of cargo, with the arrival of a multinational company centre less than 15 km away and the presence of a strong industrial presence in the nearby hinterland.	 Very populated area towards the sea makes expansion in that direction almost impossible; Two large or medium/large airports within 150 km and one small airport within 50 km offer similar services with good connections which reduce the potential catchment area of the airport; Long dialogues with the Province and the Region to have support for the development (including eco-sustainable) of the airport; With the recent modernization of the highway and the high-speed rail network, the domestic traffic comes mainly by wheel or rail. 		

'A3' Airport – SWOT analysis

	Strengths		Weaknesses
-	Strong financial backing from Regional Government;	-	Low awareness on the international markets;
-	Non saturated capacity available for growth;	-	Size still insufficient for full financial independency;
-	Small flexible organization;	-	Low level of non-aviation revenues,
-	Sound financials;		especially from parking;
-	Closeness to city centres and easy access from highways;	-	Incoming tourism activities not well developed;
-	Good touristic attractiveness (sea, mountains).	-	Nearness of Rome airports served through highway.
	Opportunities		Threats
-	Attractiveness for airside business (hangars, new airline base);	-	Further growth of Rome;
-	Good relationship with largest low-cost carriers for	-	Investment on rail service to Rome;
	promoting strong growth;		Region gross domestic product growth.
-	New real estate contracts from Regional entities.		6 6 m m

'A5' Airport – SWOT analysis

	Strengths	Weaknesses	
- -	Proximity to the city; Rail connection with the provincial capital; There are no criticalities with the public administration and/or the local population of the nearby municipalities for noise, etc.	 Traffic congestion on the road to access to the airport; Inefficient railway connection with different main towns of the nearby area; No direct connection with the port. 	
	Opportunities	Threats	
- - -	The region is a rapidly expanding touristic area; The airport managing body has a great know-how as it manages several airports; Expansion of the parking offer, including rental cars; Rationalization of airport-station-port bus services;		
-	A new "Flixbus" stop at the airport.	prevents the planning of business aviation.	

```
European Regional Development Fund
```


'A6' Airport – SWOT analysis

	Strengths		Weaknesses
-	The tourist attractiveness of the region, and in particular the area served by the Airport, is constantly increasing;		
-	Proximity to the city and its port;	-	High parking occupancy rate;
-	There are no criticalities with the public administration and/or the local population of the nearby municipalities for noise, etc; Presence of a direct and frequent bus connection between the airport, the railway station and the port;	-	Seasonality of the demand; Traffic congestion on the access roads to the airport (in particular the arrivals area) in some time slots.
-	Presence of direct and frequent bus connections with the nearby city.		
	Opportunities		Threats
-	Expansion of parking spaces;		
-	Construction of the new railway connection with A6 Airport, which allows the offer of direct connections with the main regional destinations, in particular the regional capital, and nearby main cities;	-	Lack of funds to finance the enhancement of local public transport services.
-	A new Flixbus stop at the airport.		

Water management

At Adrigreen airports, water consumption ranged between 8,455 and 88,799 m3 and from 12.3 to 34.4 l/passenger. The l/passenger index is commonly used for evaluating water consumption, but it may not reflect conservation actions or the best management of water resources in a specific airport (de Castro Carvalho et al. 2013). For small to medium sized airports, Mancinelli et al. (2021) have observed that the water-consumption-per-passenger index likely reflects economies of scale with values of the index influenced by the number of people accompanying the passengers at the terminals.

To reduce the water footprint of the airport infrastructures, the Adrigreen partners reported to have in place initiatives aiming at reducing water consumption, monitoring the quality of surface water and groundwater and preventing groundwater pollution.

The reduction in water consumption would result in decreasing greenhouse gases emissions deriving from water management. For example, in Italy the consumption of one m3 of drinking water corresponds to the emission of 0.579kg CO2eq (Dominici Loprieno et al. 2017). Figure 2 shows the budgets of greenhouse gases emissions deriving from airports' yearly mean water consumption compared to the overall mean water consumption of the Adrigreen airports.

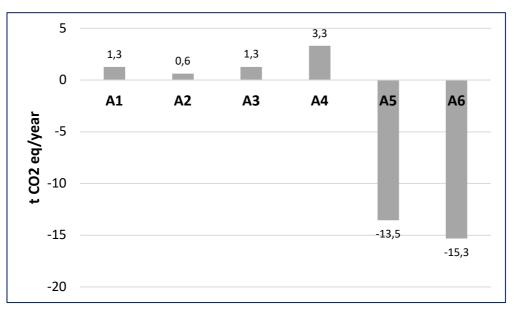


Figure 2 Disparities in greenhouse gases emissions deriving from the difference between airports' yearly mean and overall mean water consumption per passenger in the time period 2016 – 2018.

Mean water consumption between 2.5 and 3.7l/passenger above the overall mean corresponds up to 3.3t CO2eq higher greenhouse gases emissions each year, whereas mean water consumption about 11l/passenger below the overall mean corresponds to about 15.3t CO2eq lower greenhouse gases emissions each year.

Table 4 resumes examples of actions aimed at reducing the water footprint of the airport infrastructure. For further information about sustainable airport water management, the readers can refer to the comprehensive work by Baxter et al. (2019).

General action	Specific Short-Term Long-Term Action	Metrics	Applicable to	Status	Strengths Weaknesses (Index)	Opportunities Threats (Index)
			A1	2	1	1
Deereeine	Monitoring of	Water	A2	2	1	-1
Decreasing water	water	consumption	A3	2	1	0
consumption	consumption	(m3 <i>,</i>	A4	2	N/A	N/A
consumption	(STA)	l/passenger)	A5	2	1	1
			A6	2	2	1
		Water	A1	1	2	1
Decreasing	Rainwater harvest and use (LTA)		A2	1	1	-1
drinking		consumption	A3	1	1	0
water		(m3, I/passenger)	A4	1	N/A	N/A
consumption			A5	3	N/A	N/A
			A6	3	N/A	N/A
	Surface water	Water quality criteria	A1	3	N/A	N/A
De du cia e the	and groundwater quality monitoring (STA)		A2	1	1	-1
Reducing the water			A3	1	2	0
pollution			A4	3	N/A	N/A
policitori			A5	3	N/A	N/A
			A6	3	N/A	N/A
	Organize training and education of airport staff (STA)	Participants' satisfaction	A1	2	1	0
			A2	2	1	0
Reducing the water footprint			A3	2	0	0
			A4	2	N/A	N/A
			A5	2	1	2
			A6	2	2	0
N/A = not applicable; LTA = long term action; STA = short term action						

Table 4 Status and applicability of actions to reduce the water footprint of the airport infrastructure and potential indicators.

Figure 3, Figure 4, and Figure 5 show a comparison between airports' yearly mean and overall mean water consumption in terms of budget respectively for the minimum $(2.4 \notin /m3)$, mean $(3.0 \notin /m3)$, and maximum $(3.8 \notin /m3)$ unit cost of water for Adrigreen airports.

Considering the overall mean cost of about $3.0 \notin m3$, airports' yearly mean water consumption up to 3.71/passenger above the overall mean corresponds to spending up to $16,950 \notin$ more, whereas airports' yearly mean water consumption up to 11.31/passenger below the overall mean leads to savings up to $78,500 \notin$ each year.

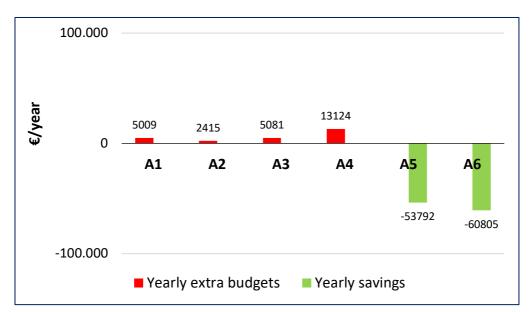


Figure 3 Yearly savings/extra budgets deriving from water consumption below/above the Adrigreen airports' average based on Adrigreen airports' overall minimum cost of water (2.4€/m3) in the time period 2016–2018.

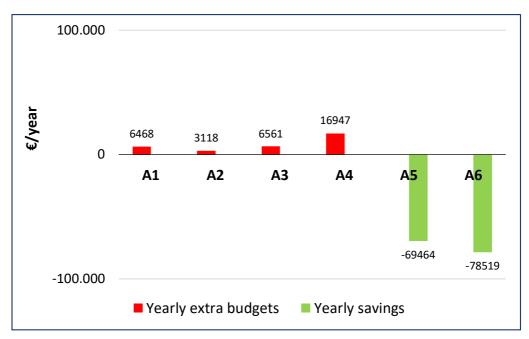


Figure 4 Yearly savings/extra budgets deriving from water consumption below/above the Adrigreen airports' average based on Adrigreen airports' overall mean cost of water (3.0€/m3) in the time period 2016–2018.

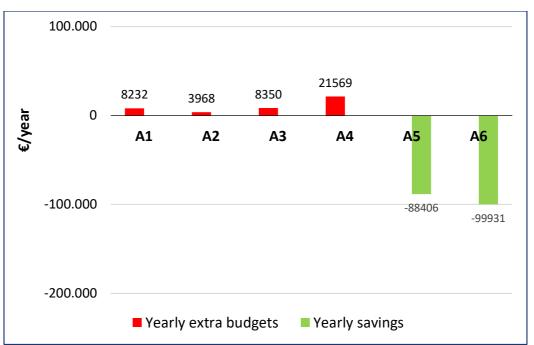


Figure 5 Yearly savings/extra budgets deriving from water consumption below/above the Adrigreen airports' average based on Adrigreen airports' overall maximum cost of water (3.8€/m3) in the time period 2016–2018.

Table 5 resumes relevant airport reference case studies for actions aimed at reducing the water footprint.

General action	Specific action	Metrics	Airport reference case studies
Decreasing water consumption	Monitoring for water consumption and leaks	Water consumption (m3, I/passenger)	Manchester Airport, London Heathrow International Airport (De Castro Carvalho et al. 2013).
Decreasing drinking water consumption	Rainwater harvest and use	Water consumption (m3, I/passenger)	A5, and A6 airports (this study); Boston Logan International Airport (Massport 2018); Website of Delhi Airport (2021).
Reducing the water pollution	Surface water and groundwater quality monitoring	Water quality criteria	A1, A4, A5, and A6 airports (this study); Copenhagen Airport (Baxter et al. 2019).
Reducing the water footprint	Organize training and education of airport staff	Participants' satisfaction	Website of Airports International Council.

Table 5 Airport reference case studies for actions aimed at reducing the water footprint.

Waste management

Regarding waste handling at Adrigreen airports, A4, A5, and A6 recycle different types of waste fractions (e.g., paper and cardboard, metal, plastic, glass, organic fraction, and hazardous waste), whereas A1, A2, and A3 airports recycle only paper, cardboard, and metal.

In line with the so-called "waste hierarchy", waste management initiatives promote waste prevention, reduction, recycling, and recovery with the aim of achieving the goal of sending zero waste to landfills.

Reducing the amount of waste sent to landfills has also an impact on global climate change in terms of reduction in greenhouse gases emissions. For example, each kilogram of general waste stockpiled in landfills leads to the emission of up to one kilogram of CO2eq (Oficina Catalana del Canvi Climàtic 2019).

A waste metric, that is useful to evaluate the efficiency of waste recycling actions, is the percentage diversion rate (ICAO-b):

$$Diversion \ rate = \frac{R}{R+W} \times 100 \ [\%]$$
(1)

where *R* is the weight of recycled materials that are separated from the general waste and *W* is the weight of the unsorted-fraction of general waste.

ICAO (-a) reported a set of successful eco-friendly waste management initiatives implemented at different airports around the globe including some European airports.

Table 6 summarizes several examples of actions aimed at sustainable waste-management within airport infrastructures.

Specific

General action	Specific Short-Term Long-Term Action	Metrics	Applicable to	Status	Strengths Weaknesses (Index)	Opportunities Threats (Index)
	Economic incentives		A1	1	2	2
Promoting	for recycling more		A2	1	0	1
waste	and generating less	tons of waste	A3	1	-1	1
prevention and	waste (e.g., the pay-	fractions/year	A4	1	N/A	N/A
recycling	as-you-throw		A5	1	1	2
, 0	program) (STA)		A6	1	1	1
	Disposable plastic		A1	3	N/A	N/A
	cutlery and		A2	1	0	1
Waste	, beverages replaced	kg plastic	A3	1	0	1
prevention	with easily	waste/passenger	A4	1	N/A	N/A
	degradable		A5	1	1	2
	materials (STA)		A6	1	2	1
	Training of employees on recycling (STA)	tons of waste fractions/year	A1	1	1	1
			A2	1	0	1
Promoting			A3	1	2	0
waste recycling			A4	1	N/A	N/A
recycling			A5	3	N/A	N/A
			A6	3	N/A	N/A
	Instructions for waste separation at the passenger terminal (STA)	kg/passenger	A1	3	N/A	N/A
-			A2	1	0	1
Promoting			A3	1	1	2
waste recycling			A4	1	N/A	N/A
recycling			A5	3	N/A	N/A
			A6	3	N/A	N/A
	Use construction waste and amend construction standards to reflect best practice in material reuse (LTA)	tons of waste	A1	1	2	0
			A2	1	-1	-1
Promoting			A3	1	0	1
waste reuse			A4	1	N/A	N/A
			A5	1	0	1
			A6	1	0	1
Promoting waste reuse	Use of environmentally friendly asphalt for repaving parking lots and runways (LTA)	tons of recycled asphalt; emissions of GHG and airborne pollutants	A1	1	1	0
			A2	1	2	0
			A3	1	2	0
			A4	1	N/A	N/A
			A5	1	2	2
			A6	1	2	1
GHG = Green	house Gases ;N/A = N	ot Applicable; LTA =	Long Term	Action	; STA = Short ⁻	Term Action
Table 6 Status	and applicability of action	ons related to waste m	nanagement	and pot	ential indicato	rs.

Table 7 resumes relevant reference case studies for actions aimed at improving waste management at the airport infrastructure.

General action	Specific action	Specific action Metrics	
Promoting waste prevention and recycling	Economic incentives for recycling more and generating less waste (e.g., the pay-as-you-throw program)		London Stansted Airport (2010).
Waste prevention	Disposable plastic cutlery and beverages replaced kg plastic with easily degradable waste/passenger materials		A1 airport (this study); Glasgow Airport (2019).
Promoting waste recycling	tons of waste Training of employees on fractions/year; recycling participants' satisfaction		A5, and A6 airports (this study); London Stansted Airport (2010); Website of Airports International Council.
Promoting waste recycling	Instructions for waste separation at the passenger terminal	kg/passenger	A1, A5, and A6 airports (this study).
Promoting waste reuse	Use construction waste and amend construction standards to reflect best practice in material reuse	tons of waste	London Stansted Airport (2010).
Promoting waste reuse	Use of environmentally friendly asphalt for repaving parking lots and runways	tons of recycled asphalt; emissions of GHG and airborne pollutants	Hamburg, Frankfurt, Munich, and Cambridge Airports, (D'Angelo et al. 2008, White 2013); Logan International Airport (Civil + Structural Engineer, 2008).

GHG = Greenhouse Gases

Table 7 Airport reference case studies for actions aimed at improving waste management.

Energy management

Terminals are responsible for the largest fraction of energy consumption at airports (ACI 2012). For example, at Santander Airport (Spain) the terminal building accounted for about 76.6% of the energy consumption of the entire infrastructure (Airport Seve Ballesteros-Santander cited by Ortega Alba and Manana 2016). Also for energy savings, the related environmental benefits are both in terms of climate-change global impacts and in terms of quality of the local environment.

At A1, A2, A3, and A4 airports, the fuel consumption for heating buildings was the second contributor to the greenhouse gases emissions deriving from energy consumption (from 21.7% up to 51.1%).

Adrigreen airports' greenhouse gases emissions deriving from the fuel used for heating buildings ranged from 0.1 to 2.1kg of CO2eq/passenger and between 1 and 6kg of CO2eq/m3 of heated spaces.

Figure 6 shows the budgets in greenhouse gases emissions deriving from differences between airports' yearly mean and overall mean fuel consumption for heating the buildings at Adrigreen airports.

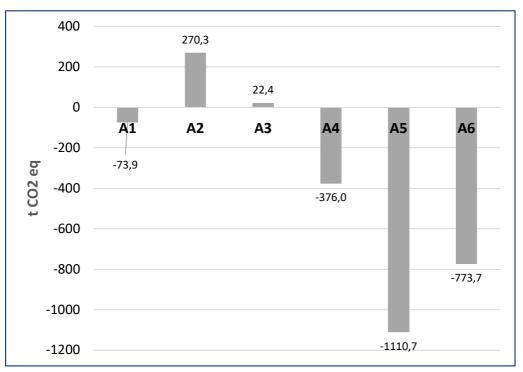


Figure 6 Disparities in greenhouse gases emissions related to the difference between airports' yearly mean and overall mean fuel consumption for heating buildings in the time period 2016–2018.

Greenhouse gases emissions deriving from mean fuel consumption up to 0.96kg CO2eq/passenger above the overall mean can add up to 270t of CO2eq emissions each year, whereas fuel consumption up to 0.33kg CO2 eq/passenger below the overall mean can decrease up to 1110t of CO2eq emissions each year.

Energy efficiency of terminal buildings and the related appliances varies with the technologies employed, the design and the age of the building (ACI 2012). Improving the energy efficiency is a prerequisite to reduce exhaust emissions deriving from the combustion of fuel for heating purposes. Table 8 resumes examples of actions aimed at decreasing energy consumption at the airports.

General action	Specific Short-Term Long-Term Action	Metrics	Applicable to	Status	Strengths Weaknesses (Index)	Opportunities Threats (Index)
		Total energy consumed; electricity consumption (kWh); fuel consumption (m3; l; kg); GHG emissions (kg CO2eq/m3; kg CO2eq/passenger)	A1	1	1	1
	Building Management System (STA)		A2	1	2	1
Decreasing energy consumption			A3	3	N/A	N/A
			A4	1	N/A	N/A
			A5	1	0	1
			A6	1	1	0
		Total energy consumed; electricity consumption (kWh); fuel consumption (m3; l; kg); GHG emissions (kg CO2eq/m3; kg CO2eq/passenger)	A1	1	0	1
Decreasing energy consumption	Cogeneration CHP/CCHP plant (LTA)		A2	1	2	1
			A3	1	1	1
			A4	1	N/A	N/A
			A5	2	1	2
			A6	1	1	0
. GHG = Greenhouse Gases; N/A = Not Applicable; LTA = Long Term Action; STA = Short Term Action						

Table 8 Actions aimed at reducing energy consumption and potential indicators.

Table 9 summarizes relevant/reference case studies of actions aimed at decreasing energy consumption at the airports.

General measure	Specific action	Metrics	Airport reference case studies		
Decreasing energy consumption	Building management system	Total energy consumed (electricity consumption (kWh); fuel consumption (m3; l; kg)); GHG emissions (kg CO2eq/m3; kg CO2eq/passenger)	A3 airport (this study).		
Decreasing energy consumption	Cogeneration plant	Total energy consumed (electricity consumption (kWh); fuel consumption (m3; l; kg)); GHG emissions (kg CO2eq/m3; kg CO2eq/passenger)	Website of Leonardo da Vinci Airport (—); Malpensa Airport (SEA Energia 2019).		
GHG = Greenhouse Gases.					

Table 9 Airport reference case studies for actions aimed at decreasing energy consumption.

Figure 7 shows a comparison between airports' yearly mean and overall mean fuel consumption for heating buildings in terms of budget based on the mean costs of diesel fuel $(1.1 \notin /I)$, heating oil $(0.6 \notin /I)$, and natural gas $(0.64 \notin /m3)$ for the Adrigreen airports.

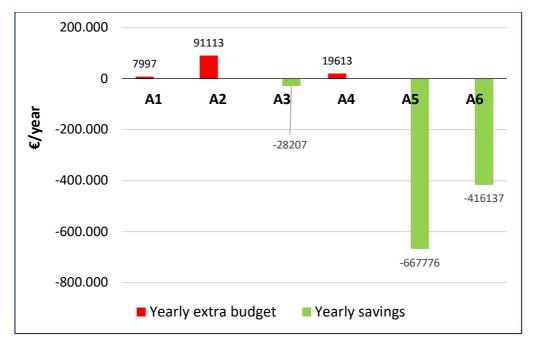
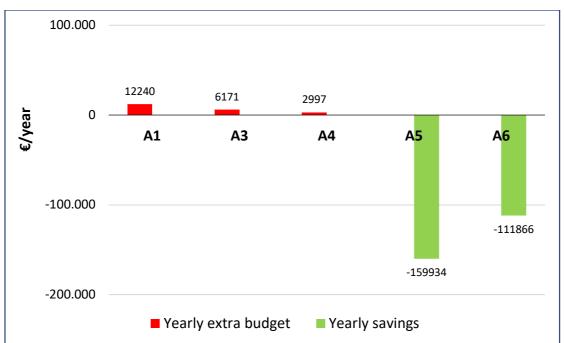
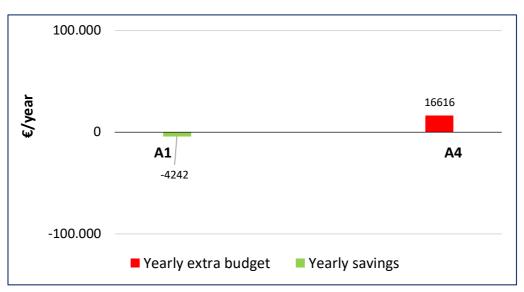
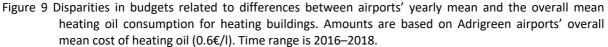


Figure 7 Disparities in budgets related to differences between airports' yearly mean and the overall mean fuel consumption for heating buildings based on the Adrigreen airports' overall mean cost of diesel fuel (1.1€/I), heating oil (0.6€/I), and natural gas (0.64€/m3) in the time period 2016–2018.

Figure 8 shows a comparison between airports' yearly mean and overall mean diesel fuel consumption for heating buildings in terms of budget. A2 Airport does not use diesel fuel for heating purposes. Considering the overall mean cost of about $1.1 \notin /I$, airports' yearly mean diesel fuel consumption up to 0.04I/passenger above the overall mean corresponds to extra costs up to $12,200 \notin$, whereas airports' yearly mean diesel fuel consumption up to 0.04I/passenger below the overall mean corresponds to extra savings up to $111,900 \notin$ each year.




Figure 8 Disparities in budgets related to differences between airports' yearly mean and the overall mean diesel fuel consumption for heating buildings. Amounts are based on Adrigreen airports' overall mean cost of diesel fuel (1.1€/l) in the time period 2016–2018.


Figure 9 shows a comparison between airports' yearly mean and overall mean heating oil consumption for heating buildings in terms of budget. Only A1 and A4 airports reported to use heating oil for heating purposes. Considering the overall mean cost of about $0.6 \in /I$, airports' yearly mean heating oil consumption up to 0.01I/passenger above the overall mean corresponds to extra costs up to $16,600 \in$, whereas airports' yearly mean diesel fuel consumption up to 0.01I/passenger below the overall mean corresponds to extra savings up to $4,200 \in$ each year.

As a special point, we must stress here that the use of diesel fuel for heating is strongly discouraged nowadays both for its rather high carbon footprint and for the relevant emissions of airborne pollutants associated to its use. Even more important, the use of heating oil is nowadays almost banned and should be discontinued being the related effects on the environment even more relevant. We strongly recommend Adrigreen partners to modify heating systems so to burn natural gas or, at least, liquified petroleum gas (LPG) or diesel fuel as soon as possible.

Figure 10 shows a comparison between airports' yearly mean and overall mean natural gas consumption for heating buildings in terms of budget. Only A1 and A4 airports do not use natural gas for heating purposes. Considering the overall mean cost of about $0.64 \notin m3$, airports' yearly mean natural gas consumption up to 0.5m3/passenger above the overall mean corresponds to extra costs up to $91,100 \notin$, whereas airports' yearly mean natural gas consumption up to 0.2m3/passenger below the overall mean corresponds to extra savings up to $507,800 \notin$ each year (Figure 10).

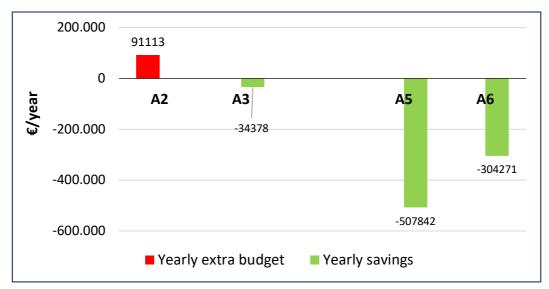


Figure 10 Disparities in budgets related to differences between airports' yearly mean and the overall mean heating oil consumption for heating buildings. Amounts are based on Adrigreen airports' overall mean cost of natural gas (0.64€/m3) in the time period 2016–2018.

Electricity

In line with the findings reported, between all, by Ortega Alba and Manana (2016), at Adrigreen airports electricity is the dominant energy supplier. In general, the electricity is delivered by the commercial grid and it is supplied by a power company at each Adrigreen airport. As a result, the highest fraction of the carbon footprint deriving from energy consumption is related to electricity. For example, at A1, A2, A3, and A4 airports, electricity consumption was the highest contributor to greenhouse gases emissions (from 43.8% up to 65.4%).

Figure 11 shows differences in greenhouse gases emissions deriving from airports' yearly mean electricity consumption compared with the overall mean electricity consumption of the Adrigreen airports. Mean electricity consumption up to 2.3kWh/passenger above the overall mean corresponds up to 223.3t of CO2eq extra emissions each year, whereas electricity consumption between 0.4–0.6kWh/passenger below the overall mean corresponds to 94.3–518.9t of CO2eq lower emissions each year.

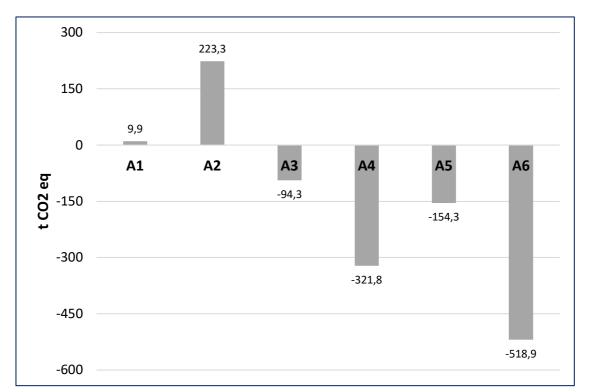


Figure 11 Departures in greenhouse gases emissions related to the difference between airports' yearly mean and overall mean electricity consumption in the time period 2016 – 2018.

The action plans aimed at reducing electricity consumption first would have an impact on the total energy consumption of the airports. These actions would result also in decreasing the carbon footprint of the airport activities. For example, Light-Emitting Diodes (LED) lightning has been already implemented by most of the Adrigreen partners as an action to reduce electricity consumption and hence decrease greenhouse gases emissions. The complete transition to LED lightning system could represent an interesting option.

Even without decreasing electricity absorption, action plans aimed at decarbonizing electricity consumption would decrease the carbon footprint of the airport activities too. For example, at Adrigreen airports part of the electricity consumed is already produced or is going to be produced through on-site renewable energy generation (e.g. photovoltaic systems) or "renewable-like" energy generation (e.g. Combined Heat and Power or Combined Cooling, Heat and Power plants). In terms of carbon footprint, the environmental assessments of A5 and A6 airports showed the best results because of green power purchasing (i.e., electricity generated from renewable resources such as solar, wind, geothermal, hydropower, etc.) coupled with local photovoltaic systems.

According to a survey reported by the European Environment Agency (2019), 65% of the airports reported to purchase electricity from renewable sources. Moreover, on-site renewable energy generation is done at 61% of the airports that took part to the survey (European Environment Agency 2019), with the renewable energy produced on site covering 1–20% of the energy needs of 89% of these airports.

Table 10 reports examples of actions aimed at reducing the electricity consumption and/or the related carbon footprint.

General action	Specific Short-Term Long-Term Action	Metrics	Applicable to	Status	Strengths Weaknesses (Index)	Opportunities Threats (Index)	
			A1	2	0	1	
			A2	2	1	1	
Decreasing	Light-Emitting	Electricity consumption (kWh);	A3	2	1	0	
electricity consumption	Diodes (LED) lightning (STA)	GHG emissions (CO2eq)	A4	2	N/A	N/A	
		(00204)	A5	2	0	1	
			A6	2	-1	1	
			A1	1	2	0	
	On-site	Electricity consumption (kWh) from the commercial grid; GHG emissions (CO2eq)	A2	1	1	1	
Decarbonizing	renewable		A3	1	1	1	
electricity energy consumption generation (LTA)	generation		A4	1	N/A	N/A	
	(LTA)		A5	1	0	2	
			A6	1	2	0	
			A1	1	2	0	
			Electricity consumption (kWh)	A2	1	1	1
Decarbonizing	Solar energy to power aircrafts	vs fuel consumption	A3	1	1	1	
electricity consumption	at the gate (LTA)	(I); GHG emissions and	A4	1	N/A	N/A	
	(2173)	airborne pollutants emissions	A5	1	0	2	
		Christions	A6	1	2	0	
		GHG emissions	A1	1	-1	0	
	Purchase of electricity	(CO2eq); Amount of	A2	1	1	1	
Decarbonizing	generated from	renewable energy purchased by the	A3	1	1	1	
electricity consumption	a mix of renewable	airport, as a	A4	1	N/A	N/A	
	energy sources (STA)	percentage of total energy consumed by	A5	3	N/A	N/A	
		the airport (ACI 2012)	A6	3	N/A	N/A	

Table 10 Actions related to electricity consumption and potential indicators.

Figure 12, Figure 13, and Figure 14 show a comparison between Adrigreen airports' yearly mean and overall mean electricity consumption in terms of budget. Figure 12 takes into account the electricity lower price $(0.13 \in /kWh)$, Figure 13 the average price $(0.15 \in /kWh)$, and Figure 14 the top price $(0.16 \in /kWh)$ for the various airports. Considering the overall mean price of about $0.15 \in /kWh$, airports' yearly mean electricity consumption up to 2.3kWh/passenger above the overall mean corresponds to extra costs up to $101,000 \in$, whereas airports' yearly mean electricity consumption up to 2.3kWh/passenger below the overall mean leads to extra savings up to $235,000 \in$ each year.

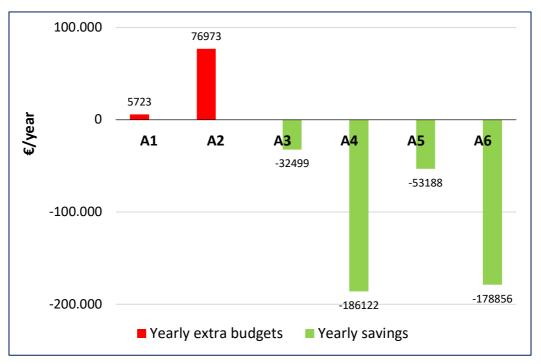
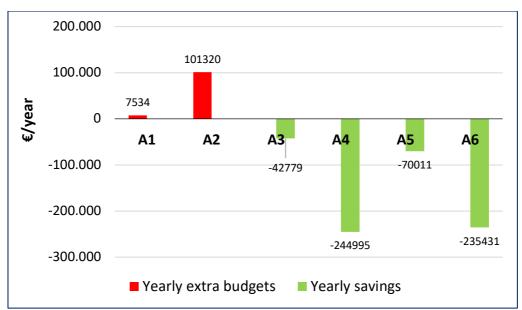
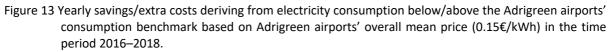




Figure 12 Yearly savings/extra costs deriving from electricity consumption below/above the Adrigreen airports' consumption benchmark based on Adrigreen airports' overall minimum price (0.13€/kWh) in the time period 2016–2018.

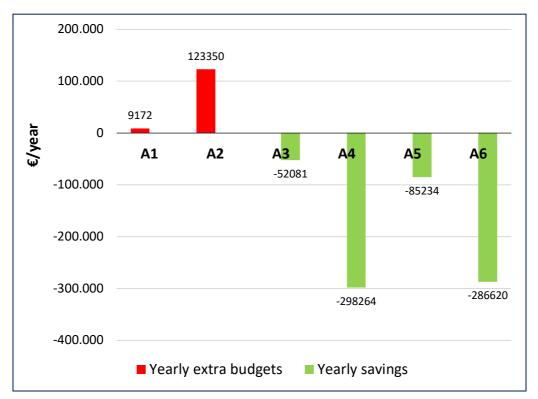


Figure 14 Yearly savings/extra costs deriving from electricity consumption below/above the Adrigreen airports' consumption benchmark based on Adrigreen airports' overall maximum price (0.16€/kWh) in the time period 2016–2018.

Table 11 summarizes relevant/reference case studies of actions aimed at decreasing the environmental footprint of electricity consumption at the airports.

1

General action	Specific action	Metrics	Airport reference case studies
Decreasing electricity consumption	Light-emitting diodes (LED) lightning	Electricity consumption (kWh); GHG emissions (CO2eq)	Copenhagen Airport (Baxter, et al. 2018).
Decarbonizing electricity consumption	On-site renewable energy generation	Electricity consumption (kWh) from the commercial grid; GHG emissions (CO2eq)	A4, A5, and A6 airports (this study); Copenhagen Airport (Baxter, et al. 2018); Stockholm-Arlanda Airport ICAO (—c).
Decarbonizing electricity consumption	Solar energy to power aircrafts at the gate	Electricity consumption (kWh) vs fuel consumption (I); GHG emissions (CO2eq) and airborne pollutants emissions	Douala International Airport (ICAO —d).
Decarbonizing electricity consumption	Purchase of electricity generated from a mix of renewable energy sources	GHG emissions (CO2eq); Amount of renewable energy purchased by the airport, as a percentage of total energy consumed by the airport (ACI 2012)	A5, and A6 airports (this study).
GHG = Greenhouse	Gases		

Table 11 Airport reference case studies for actions aimed at decreasing the environmental footprint of electricity consumption.

Fossil fuel consumption of company operated vehicles

Fossil-fuel vehicles generate negative impacts both on the global scale and on the local environments. The framework is the same that we have already outlined for heating fuels but here the effects are even bigger, especially in terms of local airborne pollutant emissions.

Adrigreen airports' greenhouse gases emissions deriving from the operations performed by fossil fuel vehicles were up to 0.3kg CO2/passenger. For example, each kilogram of fuel consumed by diesel or petrol passenger cars corresponds to the emission of more than 3kg of CO2 (Ntziachristos et al. 2019). Moreover, as already outlined, several more toxic substances are poured into the environment, manly airborne pollutants deriving both from the combustion and from the wearing of brake pads, tires, etc. While there is currently no way to reduce the latter, the former can be significantly reduced or even zeroed by introducing modern technologies such as electrification.

Figure 15 shows disparities in greenhouse gases emissions deriving from differences between airports' yearly mean and overall mean fuel consumption for company operated vehicles of the Adrigreen airports.

Greenhouse gases emissions deriving from mean fuel consumption up to 0.17kg of CO2eq per passenger above the overall mean corresponds up to 395t of extra CO2eq emissions each year, whereas fuel consumption up to 0.16kg of CO2eq per passenger below the overall mean leads to a reduction up to 717t of CO2eq emissions each year.

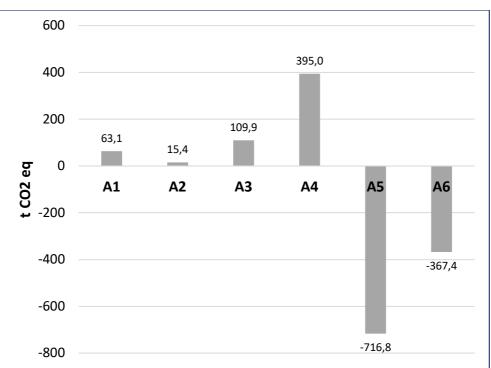


Figure 15 Disparities in greenhouse gases emissions related to the difference between airports' yearly mean and overall mean fuel consumption for company operated vehicles in the time period 2016 –2018.

A potential distortion in the benchmarking of the fossil fuel consumption of vehicles managed by Adrigreen partners could arise when comparing airports implementing partial/total outsourcing of airside service with airports operating fully-internal facilities.

As already outlined, fossil fuel vehicles impair the condition of the ambient air in the vicinity of the airports. For instance, diesel passenger cars release about 13g of nitrogen oxides and more than 1g of particulate matter per each kilogram of fuel they burn (Ntziachristos et al. 2019). Switching from fossil-fuel to electric vehicles would result in decreasing local emissions of airborne pollutants.

Besides the arguments outlined at the beginning of this chapter, local emissions of some airborne pollutants such as NOx and fine particulate matter can be assumed nil for the electric vehicles. However, the emission of some pollutants, especially greenhouse gases should be taken into account depending on the production site and on the technology operated for producing electricity. For example, greenhouse gases are released during the generation of electricity in power plants that burn fossil fuels and these emissions must be taken into account. Also, one may generate electricity locally, for instance by a Combined Heating Cooling and Power generator. In this case, also airborne pollutant emissions are to be taken into account.

According to a survey reported by the European Environment Agency (2019), the purchase of electric vehicles is the most popular mitigation action to contain the environmental impact of the airports' vehicle fleet (Table 12).

	Share of (51) EU28 European Free Trade Association airports [%]
Electric vehicles	86
Hybrid vehicles	47
Vehicles that run on sustainable alternative fuel	35
Provide incentives for taxis that use 'green' vehicle solutions	18

Table 12 Share of (51) EU28 and European Free Trade Association airports implementing environmental impact mitigation actions related to vehicle fleet.

Table 13 (adapted from European Environment Agency 2019) shows some actions that may apply to the Adrigreen partners for the decrease/decarbonization of fossil fuel consumption of company-operated vehicles.

General action	Specific Short-Term Long-Term Action	Metrics	Applicable to	Status	Strengths Weaknesses (Index)	Opportunities Threats (Index)
			A1	2	0	1
	Purchase of electric	Electricity consumption	A2	1	1	1
Decreasing	vehicles (e.g., electric	(kWh) versus kg or I fossil	A3	2	2	2
fossil fuel consumption	aircraft tug, electric baggage tractor, etc.)	fuel;	A4	2	N/A	N/A
	(STA)	GHG emissions (CO2eq)	A5	1	0	2
		(00204)	A6	1	-1	0
			A1	3	N/A	N/A
		Electricity consumption	A2	1	1	2
Decreasing	fossil fuel stations for electric	(kW); GHG and airborne pollutants emissions	A3	2	2	1
fossil fuel consumption			A4	2	N/A	N/A
			A5	2	1	1
			A6	2	-2	0
			A1	1	1	1
		GHG and airborne pollutants	A2	1	2	2
Decreasing	Anti-idling		A3	1	1	0
fossil fuel consumption	communication campaign (STA)		A4	1	N/A	N/A
		emissions	A5	1	2	1
			A6	1	2	1
			A1	1	1	0
	Use of alternative	Consumption	A2	1	1	1
Decarbonizing	renewable fuels (diesel	of renewable	A3	1	1	2
fuel consumption	from waste and residue) for diesel	fuel vs fossil fuel (I);	A4	1	N/A	N/A
	vehicles (STA)	GHG emissions	A5	1	0	1
			A6	1	0	0

 Table 13 Status and applicability of actions related to decrease/decarbonize fossil fuel consumption of company operated vehicles and potential indicators.

Figure 16 shows a comparison between airports' yearly mean and overall mean fuel consumption for company operated vehicles in terms of budget based on the mean costs of diesel fuel ($1.12 \notin /I$), and gasoline ($1.23 \notin /I$) for the Adrigreen airports.

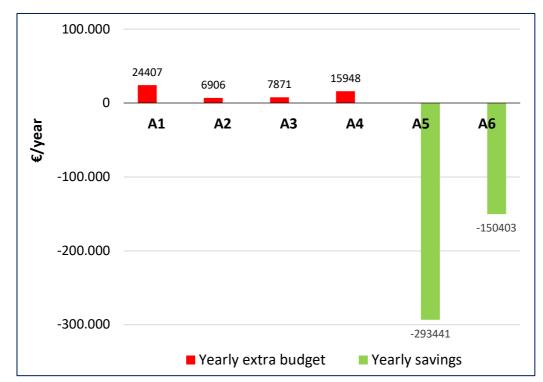


Figure 16 Disparities in budgets related to differences between airports' yearly mean and the overall mean fuel (diesel and petrol) consumption for company operated vehicles based on the Adrigreen airports' overall mean cost of diesel (1.12 €/I), and petrol (1.23 €/I) in the time period 2016–2018.

Figure 17 shows a comparison between airports' yearly mean and overall mean diesel fuel consumption for company operated vehicles in terms of budget.

Considering the overall mean cost of about $1.12 \notin /l$, airports' yearly mean diesel fuel consumption up to 0.04l/passenger above the overall mean leads to extra costs up to 26,700 \notin , whereas airports' yearly mean diesel fuel consumption up to 0.06l/passenger below the overall mean leads to savings up to 293,400 \notin each year.

Figure 18 shows a comparison between A1 and A4 airports' yearly mean and overall mean gasoline consumption for company-operated vehicles in terms of budget.

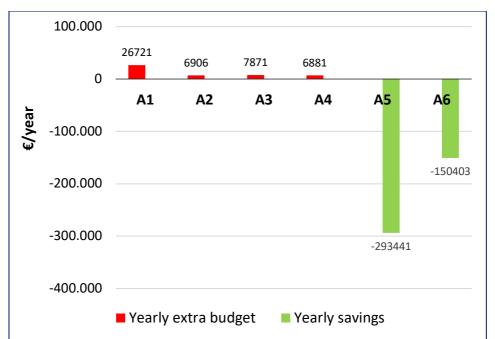


Figure 17 Yearly savings/extra costs deriving from company operated vehicles diesel fuel consumption below/above the Adrigreen airports' consumption benchmark based on Adrigreen airports' overall mean cost of diesel fuel (1.12€/l) in the time period 2016–2018.

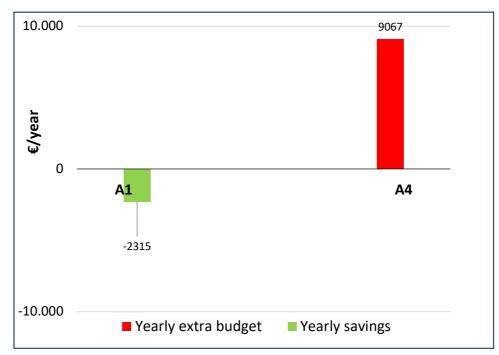


Figure 18 Yearly savings/extra costs deriving from company-operated vehicles gasoline consumption below/above the Adrigreen airports' consumption benchmark based on Adrigreen airports' overall mean cost of gasoline (1.23€/I) in the time period 2016–2018.

Table 14 summarizes relevant airport reference case studies for actions aimed at decreasing fossil fuel consumption at the airports.

General action	Specific action	Metrics	Airport reference case studies
Decreasing fossil fuel consumption	Purchase of electric vehicles (e.g., electric aircraft tug, electric baggage tractor, etc.)	Electricity consumption (kWh) versus kg or I of fossil fuel; GHG emissions (CO2eq)	Copenhagen Airport (2018).
Decreasing fossil fuel consumption	Provide charging stations for electric vehicles	Electricity consumption (kW); GHG and airborne pollutants emissions	A1 airport (this study); Helsinki Airport (Finavia 2019).
Decreasing fossil fuel consumption	Anti-idling communication campaign	GHG and airborne pollutants emissions	Copenhagen Airport (2018).
Decarbonizing fuel consumption	Use of alternative renewable fuels (diesel from waste and residue) for diesel vehicles	Consumption of renewable fuel vs fossil fuel (I); GHG emissions (CO2eq)	Helsinki Airport, and other Lapland Airports (Finavia 2018).
GHG = Greenhouse	Gases		

Table 14 Airport reference case studies for actions aimed at decreasing the fossil fuel consumption.

Pilot actions for Adrigreen ports

Strengths, Weaknesses, Opportunities, and Threats analysis of Adrigreen ports

P1, P2, and P3 are listed among the trans-European transport network (TENT-T) maritime ports. Ancona is recognised as core port within the Scandinavian-Mediterranean Corridor, while Pula and Dubrovnik are comprehensive ports.

As a general remark, Pula port has its strategic asset in leisure maritime activities, while Dubrovnik port is a very important port for cruises calling the Adriatic Sea. Also, it has local ferries connecting the port to the main Croatian island.

Ferries connecting the Doric shores to Croatia, Albania, and Greece, are the strategic asset of the port of Ancona, both in terms of passengers and freight flows. Furthermore, the port of Ancona is a multipurpose port, thanks to the presence of different maritime activities having an increasing role in the development of Marche Region economy, generating nearly 2.7% of regional GDP.

A common Strength of P1 and P3 is their geographical location. A system has been implemented by P2 port for quality management and environmental management protection based on standards.

A common Strength of P1, P2, and P3 is the proximity of their port to the city centre. This represents also a common Weakness, because the port activities can affect the quality of life of the people living nearby the port area. The environmental footprint of ports includes emission of airborne pollutants and greenhouse gases, noise, water, and soil pollution.

For example, port shipping and ground movements were reported to contribute to the yearly average ambient levels of PM₁₀ (19%), NO₂ (25%) and SO₂ (43%) of the nearby city by the Tyrrhenian Sea (Gobbi et al. 2020). Based on AERMOD simulations, Fileni et al. (2019) have observed that port activities strongly influence the local air quality. Long term exposure to airborne pollutants has been recognized as a factor causing adverse health effects (WHO 2013). Long term effects on mortality were reported by Bauleo et al. (2019) for the residents in the proximity (<500 m) of an Italian port, with higher risk of mortality from lung cancer and all cancers.

A common Weakness is represented by the lack of regular data collection and environmental monitoring.

Both P3 and P2 ports have structural barriers for the production and use of renewable energy sources.

The availability of EU financial instruments is a common Opportunity of the three ports. Moreover, the three ports are active in international projects aimed at building new infrastructures, improving accessibility, operations management, and environmental protection.

A common Threat of the three ports may be the need for large investments for new infrastructures.

A Threat reported by P1 port is the Lack of a dedicated road infrastructure with the consequence of road congestion during disembarking.

Threats for P2 port are the environmental externalities deriving from an increase in ship calls and lack of communication and coordination between institutions and other stakeholders involved in environmental protection.

P3 port considers a Threat collecting and analysing data for the application of green and sustainable technologies.

'P1' port – SWOT analysis

 The port, embedded in the Ports Authority system, has a strategical geographic position for the ferry traffic: nearly 19% on the international ferry passenger traffic of the national ports embark and/or disembark in the port, as it has a competitive transit time to Balkan countries and Greece; The port has daily departures for Greece and it is the main national port on the Italy-Croatia ferry traffic. It has also a regular line to Durres; Concerning the TEN-T European transport policy, the port is recognised as core port within the SCAN-MED corridor, a crucial north-south axis for the European economy. The port, embedded in the urban context; The port is very close to the city centre, as it is an historical port, embedded in the urban context; Therefore, the port promoted the signature of the "Blue Agreement", with the aim to reduce the sulphur content of maritime fuel for the companies willing to commit to it, contributing to the environmental sustainability of the port; In additional areas to be dedicated to port activities, the Ports Authority is rationalising and upgrading the existing infrastructures, adapting it to the new needs.
 Croatia ferry traffic. It has also a regular line to Durres; Concerning the TEN-T European transport policy, the port is recognised as core port within the SCAN-MED corridor, a crucial north-south axis for the European economy. In addition, to face to the increasing need of additional areas to be dedicated to port activities, the Ports Authority is rationalising and upgrading the existing infrastructures, adapting it to the new needs.
policy, the port is recognised as core port within the SCAN-MED corridor, a crucial north-south axis for the European economy. and upgrading the existing infrastructures, adapting it to the new needs.
Opportunities Threats
 Thanks to recent road infrastructure improvements, the port is a gateway to reach Eastern Balkans also for passengers coming from inland area, increasing its catchment area; Furthermore, territories surrounding the port are very attractive from a tourist point of view, making the port very competitive for cruise companies. Thus, the Ports Authority is going to realise a new quay and cruise terminal, to strengthen the role of the port in the cruise market; In addition, the port is a multipurpose port, where different maritime sectors contribute to its competitiveness on the international stage (passengers and freight traffic, high Tha port lacks a dedicated road infrastructure to connect it to highways. This is a quite sensitive issue, as the port is a leader in ferry transport. So far, tracks and trailers pass through a densely populated area to join highway, creating also congestions in urban roads, especially during disembarking; However, the technical - economic feasibility project for the construction of a dedicated link between the Port and the national main roads has been approved; This will ensure a smooth connection between land and sea infrastructures, essential to guarantee the future competitiveness of the port.
quality mechanical engineering, fishing sector, logistics, and tourism).

'P2' port – SWOT analysis

Strengths	Weaknesses
 Available programmes and technological documents for environmental management of port according to the national, European and International environmental legislation; Basic administrative structures created at the local level for implementation and enforcement of environmental legislation; Change in structure of passenger transport turnover in port (e.g., increase of homeport and Ro-Ro traffic leading to decrease of the unhealthy impact of cruise transit ships on environment in port area); Initiatives of port authority taken to protect the environment (e.g., implementation of a project regarding environmental monitoring); Communication policy and practice for informing the society about initiatives taken to protect the environment; There is the certified plan by the International Code for Security of Ships and Port Facilities (ISPS Code), establishing a system for quality management and environmental management protection based on standard ISO 9001/2015 and ISO 14001/2015. 	 Lack of facilities for the use of renewable energy sources; Lack of facilities for onshore power supply (cold ironing); Lack on energy efficiency of handling equipment (e.g., electrification, energy recovery); Low sulphur fuel availability; Lack of self-monitoring system for particular components of the environment; Limited internal financial resources to ensure environmentally sound operation of the port.
Opportunities	Threats
 No nearby industry to the port; Establishment of the administrative structure for the implementation and enforcement of environmental legislation; Availability of EU financial instruments in order to ensure a support to operations management processes aimed at environmental protection in the port area; Increased demands for protection of the environment in the area around the ports in order to develop priority sectors for the country; Availability of EU financial instruments for support of EU port; Operations management and environmental protection (e.g., participation in international projects). 	- Low environmental consciousness;

'P3' port – SWOT analysis

	Strengths		Weaknesses
-	Advantageous geographical location.	-	Monitoring of the port and collection of data is bad and incomplete;
		-	Environmental laws poorly implemented;
		-	Infrastructure does not support the transition to sustainable energy sources;
		-	No renewable energy resources are used;
		-	Poor waste-water management.
	Opportunities		Threats
-	Use of European Union funds;	-	Large investments;
-	Investment in new infrastructure (e.g., wastewater treatment plant);	-	Legislation that poorly supports self- sustainable development;
-	Improving accessibility;	-	Collecting and analysing data for the
-	Investment in new green maintenance equipment;		application of new technologies that enable the use of renewable energy sources and the
-	Learning from other ports how to reduce waste;		sustainable development of the port.
-	Learning from others with the aim of raising the quality of service and maintenance.		

Energy management

Energy efficiency (previously referred to as energy consumption) ranked third in the list of environmental priorities of the port sector in 2020 as reported by ESPO (2020).

Ports and terminals, with associated transport networks and equipment heavy operations, are major energy consumers and greenhouse gases emitters. Thus, challenging climate change continues to be one of the top priorities for ports and it is closely interlinked with energy consumption. Generally, the highest fraction of the carbon footprint deriving from energy consumption is related to electricity. In this framework, also due to the lack of information reported by Adrigreen Ports and the exit from the project of Low Adriatic Port Authority, only electricity consumption has been taken into account for the project. In 2018, the consumption of electricity for all ports varied in the range 692–2500MWh.

To show the importance of electricity consumption in terms of carbon footprint, global greenhouse gases emissions are reduced by 205g and 344g CO2eq in Croatia and Italy, respectively, for each kWh saved (Koffi et al. 2017). Consequently, implementing initiatives that reduce the electricity consumption at ports not only means budget savings but also brings benefits to the global environment.

Figure 19 shows differences in greenhouse gases emissions deriving from ports' yearly mean electricity consumption compared to the overall mean electricity consumption of the Adrigreen ports. Mean electricity consumption about 7.5kWh/passenger above the overall mean leads to about 83.3t of extra CO2eq emissions each year, whereas electricity consumption between 3.2–4.3kWh/passenger below the overall mean corresponds to 1174.3–1155.2t of lower CO2eq emissions each year.

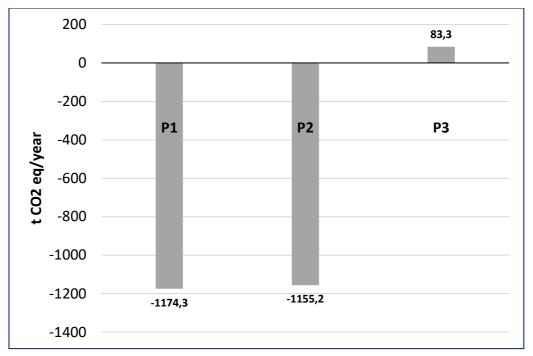


Figure 19 Disparities in greenhouse gases emissions related to the difference between ports' yearly mean and overall mean electricity consumption in the time period 2016 – 2018.

The initiatives that can be implemented (Table 15) can be divided into short-term initiatives and long-term initiatives. For example, a short-term initiative is to switch to fully LED lighting technology. Ideal for indoor/outdoor areas of terminals and buildings, in most cases this technology is being coupled with intelligent control systems, featuring different functions and capabilities (e.g., remote-controlling, automation, etc.). On the other hand, a geothermal-energy plant for heating and cooling can be considered a long-term initiative.

Such actions aimed at reducing electricity consumption would have an impact on the total energy consumption of the ports and on the related bills but would also result in decreasing the carbon footprint of the port activities. In contrast, the actions aimed at decarbonizing electricity consumption would impact the carbon footprint of the port activities but would, almost certainly, increase the electricity bills.

Figure 20, Figure 21, and Figure 22 show a comparison between ports' yearly mean and overall mean electricity consumption in terms of budget. Considering the P3 mean cost of about $0.063 \in /kWh$, P3 yearly mean electricity consumption about 7.5 kWh/passenger above the overall mean corresponds to spending up to extra 25,401 \in . Considering P1 and P2 mean coast of about $0.091 \in /kWh$ and $0.039 \in /kWh$ respectively, P1 and P2 yearly mean electricity consumption between 3.2 and 4.3kWh/passenger below the overall mean leads to savings between 219,003 \in and 312,007 \in each

year. P1 provided an average price related to electricity consumption. Therefore, a fixed value was considered for the time period 2016–2018.

General action	Specific Short-Term Long-Term Action	Metrics	Applicable to	Status	Strengths Weaknesses (Index)	Opportunities Threats (Index)
Decreasing	Light-emitting	Electricity	P1	1	1	0
electricity	diodes (LED)	consumption (kWh);	P2	3	N/A	N/A
consumption	lightning (STA).	GHG emissions (CO2eq)	P3	1	2	1
Decreasing	Energy	Electricity	P1	2	1	1
electricity	monitoring	consumption (kWh);	P2	2	2	2
consumption	system (STA).	GHG emissions (CO2eq)	P3	2	2	1
Decarbonizing		Electricity	P1	1	1	1
electricity	Photovoltaic or	consumption (kWh);	P2	1	2	2
consumption	solar panel (STA).	GHG emissions (CO2eq)	Р3	1	2	1
Decreasing	Passive house	Electricity	P1	1	2	0
Decreasing	concept and eco-	consumption (kWh);	P2	1	2	0
electricity consumption	building standards (LTA).	GHG emissions (CO2eq)	Р3	1	2	0
		Electricity	P1	1	2	1
Decarbonizing	Geothermal	consumption (kWh)	P2	2	2	2
electricity consumption	energy plant for heating and cooling (LTA).	from commercial grid; GHG emissions (CO2eq)	Р3	1	2	0
	Purchase of	GHG emissions	P1	1	1	0
		(CO2eq);	P2	1	1	1
Decarbonizing electricity consumption Decarbonizing electricity mix of renewable energy sources (STA) Decarbonizing generated from a mix of renewable energy purcha		Amount of renewable energy purchased by the port, as a percentage of total energy consumed	Ρ3	1	1	0
		Electricity	P1	1	1	1
Decarbonizing		consumption (kWh)	P2	1	2	2
electricity consumption	Wave energy converters (LTA).	from commercial grid; GHG emissions (CO2eq)	Р3	1	2	0

Table 15 Actions related to electricity consumption and potential indicators.

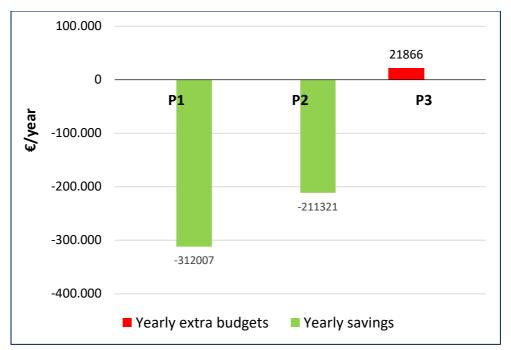


Figure 20 Yearly savings/extra budgets deriving from electricity consumption below/above the Adrigreen ports' consumption benchmark based on Adrigreen ports' specific minimum cost in the time period 2016–2018: P1=0.091€/kWh, P2=0.038€/kWh, P3=0.054€/kWh.

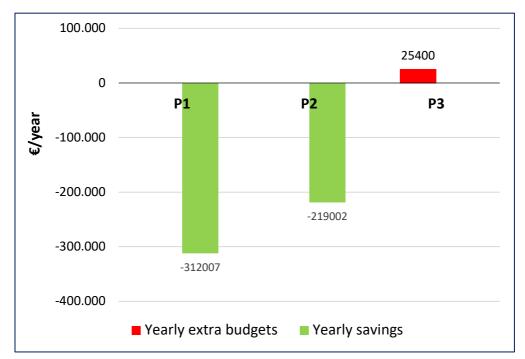


Figure 21 Yearly savings/extra budgets deriving from electricity consumption below/above the Adrigreen ports' consumption benchmark based on Adrigreen ports' specific average cost in the time period 2016–2018: P1=0.091€/kWh, P2=0.039€/kWh, P3=0.063€/kWh.

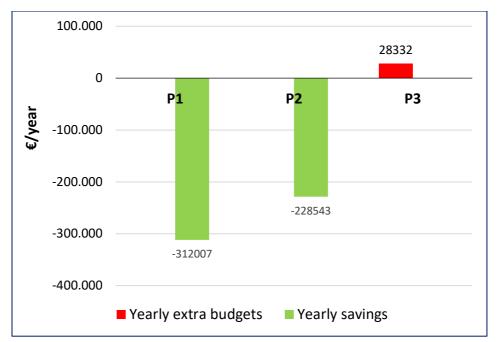


Figure 22 Yearly savings/extra budgets deriving from electricity consumption below/above the Adrigreen ports' consumption benchmark based on Adrigreen ports' specific maximum cost in the time period 2016–2018: P1=0.091€/kWh, P2=0.041€/kWh, P3=0.070€/kWh.

Table 16 summarizes relevant/reference case studies regarding actions aimed at decreasing the carbon footprint of electricity consumption at the ports.

General action	Specific action	Metrics	Port reference case studies
Decreasing electricity consumption	Light-emitting diodes (LED) lightning	Electricity consumption (kWh); GHG emissions (CO2eq)	P2 port (this study); Website port of Bilbao; Website port of Amsterdam; Website port of Tyne; Website port of Venice.
Decreasing electricity consumption	Energy monitoring system	Electricity consumption (kWh); GHG emissions (CO2eq)	Website port of Koper; Website JadeWeser Port; Website port of Valencia.
Decarbonizing electricity consumption	Photovoltaic or solar panel	Electricity consumption (kWh); GHG emissions (CO2eq)	Website port of Rotterdam; Website port of Antwerp; Website port of Gothenburg.
Decreasing electricity consumption	Passive house concept and eco- building standards	Electricity consumption (kWh); GHG emissions (CO2eq)	Website port of Amsterdam; Website port of Aalborg.
Decarbonizing electricity consumption	Geothermal energy plant for heating and cooling	Electricity consumption (kWh) from the commercial grid; GHG emissions (CO2eq)	Website port of Marseille.
Decarbonizing electricity consumption	Purchase of electricity generated from a mix of renewable energy sources	GHG emissions (CO2eq); Amount of renewable energy purchased by the port, as a percentage of total energy consumed	Website port of Vancouver.
Decarbonizing electricity consumption	Wave energy converters	Electricity consumption (kWh) from the commercial grid; GHG emissions (CO2eq)	Port of Ostend.

Table 16 Port reference case studies for actions aimed at decreasing the carbon footprint of electricity consumption.

Water management

Water quality issues ranked 7th in the list of environmental priorities of the port sector as reported in 2020 by ESPO (2020).

The contamination of fresh water may occur during the unloading/loading of ships' tanks, port activities, and leakages. Water contamination may be exacerbated by the absence of water quality monitoring system. As a general rule, reducing water consumption reduces the chances of water contamination and leakages by avoiding unnecessary water depletion.

In 2018, water consumption at Adrigreen ports varied in the range 2,313–124,916m3.

Considering the significant gap between these figures, it is important to remind that, apparently, only P1 provides water to all types of ships calling at the port.

The reduction in water consumption would also result in decreasing greenhouse gases emissions deriving from water management. For example, in Italy the use of one m3 of drinking water corresponds to the emission of 0.579kg CO2eq (Dominici Loprieno et al. 2017).

Figure 23 shows the differences in greenhouse gases emissions deriving from ports' yearly mean water consumption compared to the overall mean water consumption of the Adrigreen ports. Mean water consumption about 63.9I/passenger above the overall mean leads to 40t of extra CO2eq emissions each year, whereas mean water consumption between 17.1 and 46.8I/passenger below the overall mean corresponds to 0.5–35.5t less CO2eq emissions each year.

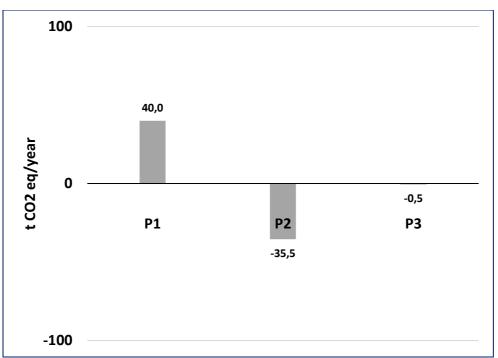


Figure 23 Disparities in greenhouse gases emissions deriving from the difference between ports' yearly mean and overall mean water consumption in the time period 2016 – 2018.

The initiatives that can be implemented (Table 17) were divided into short-term initiatives and longterm initiatives. For example, a short-term initiative is to reduce water consumption from public and offices toilettes introducing dual-flush toilettes or variable flush toilettes, reducing toilettes cistern capacity, or installing flow regulator for hand washing (time sensor, aerator etc.). Instead, a new wastewater treatment plant with re-use is a long-term initiative. This is a solution that helps cities that are near to or next to ports simply by removing the port from the main water/wastewater networks of the city.

As already outlined, actions aimed at reducing water consumption would have an impact on the total water consumption and the related bills and would also result in decreasing the carbon footprint of the port activities.

General action	Specific Short-Term Long-Term Action	Metrics	Applicable to	Status	Strengths Weaknesses (Index)	Opportunities Threats (Index)
Decreasing	Monitoring of	Water	P1	2	1	1
water	water consumption	consumption (m3,	P2	2	2	2
consumption	(STA)	l/passenger)	Р3	1	2	2
Decreasing	Rainwater	Water	P1	1	1	1
water	collection and	consumption (m3,	P2	3	N/A	N/A
consumption	reuse (LTA)	(m3, I/passenger)	Р3	1	2	2
		D	P1	2	0	0
Reducing water footprint		Participants' satisfaction	P2	1	0	1
			Р3	1	1	1
	Surface water and	147 · · · ·	P1	3	N/A	N/A
Reducing water pollution	groundwater quality monitoring	Water quality criteria	P2	3	N/A	N/A
	(STA)		Р3	1	2	2
Decreasing	Public/office	Water	P1	1	1	0
water	toilettes devices	consumption (m3,	P2	1	1	0
consumption	(STA)	l/passenger)	P3	1	1	0
Decreasing	Ships reward	Water	P1	1	2	1
water	system to reduce	consumption (m3,	P2	1	2	2
consumption	consumption (STA)	l/passenger)	P3	1	2	2
	Wastewater	GHG	P1	1	-1	-1
Improving water quality	treatment plant	emissions	P2	1	-1	0
4.4.4.1.4	(LTA)	(CO2eq)	P3	0	N/A	N/A
GHG = Greenhou	se Gases; N/A = Not A	Applicable; LTA	= Long Term	n Action	i; STA = Short	Term Action

Table 17 Actions to reduce the water footprint and consumption of the port infrastructures and related indicators.

Figure 24, Figure 25, and Figure 26 show a comparison between ports' yearly mean and overall mean water consumption in terms of budget. The port P1 provided an average price related to water consumption. Therefore, such fixed value was considered for the time period 2016–2018. Considering the mean price of water consumption of about $3.45 \notin/m3$ for P1 port, P1 yearly mean water consumption about 63.9I/passenger above the overall mean leads extra costs up to $238,197 \notin$ per year. Considering the mean price of water consumption for P3 and P2 $4.05 \notin/m3$ and $7.85 \notin/m3$ respectively, P3 and P2 yearly mean water consumption between 17.1-46.8I/passenger below the overall mean corresponds to saving between $3,764 \notin$ and $480,225 \notin$ each year.

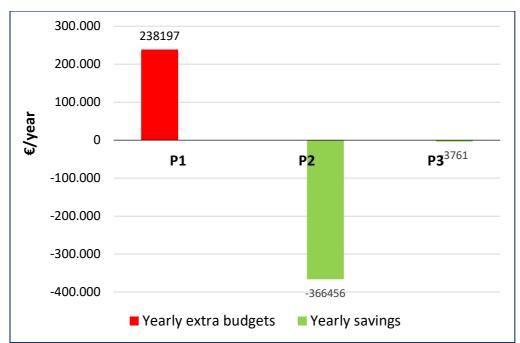


Figure 24 Yearly savings/extra budgets deriving from water consumption below/above the Adrigreen ports' consumption benchmark based on Adrigreen ports' specific minimum cost in the time period 2016–2018: P1=3.45€/m3, P2=6.0€/m3, P3=4.0€/m3.

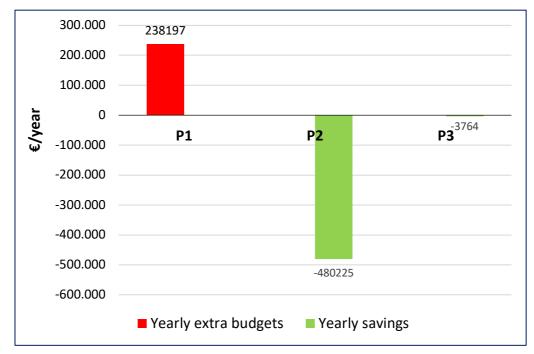


Figure 25 Yearly savings/extra budgets deriving from water consumption below/above the Adrigreen ports' consumption benchmark based on Adrigreen ports' specific average cost in the time period 2016–2018: P1=3.45€/m3, P2=7.85€/m3, P3=4.05€/m3.

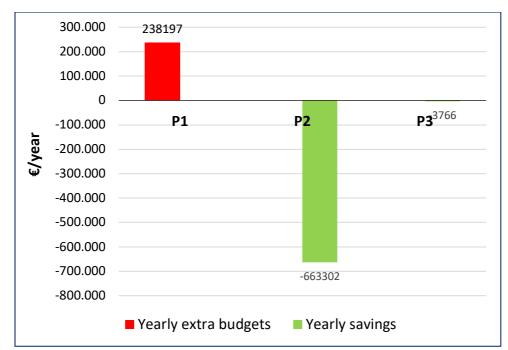


Figure 26 Yearly savings/extra budgets deriving from water consumption below/above the Adrigreen ports' consumption benchmark based on Adrigreen ports' specific maximum cost in the time period 2016–2018: P1=3.45€/m3, P2=10.8€/m3, P3=4.1€/m3.

Table 18 summarizes relevant/reference case studies for actions aimed at decreasing the footprint of water consumption at Adrigreen ports.

General action	Specific action	Metrics	Port reference case studies
Decreasing water consumption	Monitoring of water consumption	Water consumption (m3, I/passenger)	Port of Venice.
Decreasing water consumption	Rainwater reuse	Water consumption (m3, I/passenger)	P2 port (this study).
Reducing water footprint	Organize training and education of port staff.	Participants' satisfaction	Port of Venice; Website port of Rotterdam.
Reducing water pollution	Surface water and groundwater quality monitoring	Water quality criteria	P1 port (this study); P2 port (this study).
Decreasing water consumption	Public/office toilettes devices	Water consumption (m3, l/passenger)	It is a very common practice.
Decreasing water consumption	Ships reward system to reduce consumption	Water consumption (m3, I/passenger)	Website port of Rotterdam.
Improving water quality	Wastewater treatment plant	GHG emissions (CO2eq)	Port of Nantes- Saint Nazaire.
GHG = Greenhouse Ga	ISES	1	

Table 18 Reference case studies for actions aimed at decreasing the footprint of water consumption at Adrigreen Ports.

Waste management

Ship waste and port waste ranked 6th and 8th, respectively, in the list of environmental priorities of the port sector in 2020 as reported by ESPO (2020). In addition, about two thirds of European ports are today certified through an environmental standard (e.g., ISO14000, EMAS, EcoPorts' PERS), which is an increase by 11% since 2013. Today, 81% of the ports have set up an environmental monitoring program, with waste being the most monitored issue (ESPO 2020).

One of the main problems of the ports is to organize the collection of waste from ships and the quay activities. Due to the complexity of such activities, port authorities very often rely on one or more external companies.

In all the ports involved, waste management is de-centralized, and it is implemented through external companies. P1 has appointed a private company for the collection and the recycling of waste unloaded from ships and due to quay activities while the municipal waste company collects and recycle general waste from the remaining port area. This made rather difficult the benchmarking of this processes.

P2 port and P3 port have implemented plans regarding arrangements to introduce reuse or recycling of waste unloaded from the ships. Specifically, the local municipal waste company is in charge of the reuse or recycling of waste from the ships at P2 port.

Diverting waste away from landfills has also an impact on climate change in terms of reduction in greenhouse gases emissions. For example, each kilogram of general waste stockpiled in landfills leads to the emission of up to one kilogram of CO2eq (Oficina Catalana del Canvi Climàtic 2019).

Again, the initiatives that to be implemented (Table 19) can be divided into short-term initiatives and long-term initiatives. For example, a short-term initiative is to monitor waste production. In fact, one of the problems is that by delegating waste management to external companies, the port authorities find difficult to monitor the process and the related data. Another short-term initiative could be to reduce waste-management fees based on the so-called Environmental Ship Index (ESI).

Action		Applicable to	Status	Strengths Weaknesses (Index)	Opportunities Threats (Index)
Promoting Economic incentives	tons of waste fractions/year	P1	1	1	0
for recycling more and generating less waste		P2	1	1	0
(STA)		Р3	1	2	1
Disposable plastic	kg plastic waste/pass	P1	3	N/A	N/A
replaced with easily		P2	1	1	1
degradable materials (STA)		Р3	1	2	1
	tons of waste fractions/year	P1	2	1	0
Training of employees on recycling (STA)		P2	1	1	1
waste recycling on recycling (STA)		P3	1	1	0
Instructions for waste	kg/pass	P1	1	1	0
separation at the passenger terminal		P2	1	1	1
(STA)		P3	1	1	1
	Waste produced (tons, tons/pass)	P1	2	1	1
		P2	2	1	1
		P3	2	1	1
Use of	tons of recycled asphalt; emissions of GHG and airborne pollutants	P1	1	1	1
environmentally		P2	1	1	1
repaving parking lots and runways (LTA)		Р3	1	1	1
	generating less waste (STA) Disposable plastic cutlery and beverages replaced with easily degradable materials (STA) Training of employees on recycling (STA) nstructions for waste separation at the passenger terminal (STA) Monitoring of waste production (STA) Use of environmentally friendly asphalt for repaving parking lots and runways (LTA)	generating less waste (STA)fractions/yearDisposable plastic cutlery and beverages replaced with easily degradable materials (STA)kg plastic waste/passTraining of employees on recycling (STA)tons of waste fractions/yearInstructions for waste separation at the passenger terminal (STA)kg/passMonitoring of waste production (STA)Waste produced (tons, tons/pass)Use of environmentally friendly asphalt for repaving parking lots and runways (LTA)tons of recycled asphalt; emissions of GHG and airborne pollutants	generating less waste (STA)fractions/yearP2Disposable plastic cutlery and beverages replaced with easily degradable materials (STA)P1kg plastic waste/passP2P3P3Training of employees on recycling (STA)tons of waste fractions/yearP1Training of employees on recycling (STA)tons of waste fractions/yearP2Image: Separation at the passenger terminal (STA)P1P3Monitoring of waste production (STA)P1P3Monitoring of waste production (STA)P1P3Use of environmentally friendly asphalt for repaving parking lots and runways (LTA)tons of recycled asphaltsP1P3Consort P2P3P3P3P3P3P3P4P4P4P4P5P3P4P4P4P4P4P4P5P3P4P4P6P4P4P4P7P3P4P4P8P4P4P4P9P4P4P4P4P4P4P4P5P4P4P4P6P4P4P4P7P4P4P4P8P4P4P4P9P4P4P4P4P4P4P4P5P4P4P4P6P4P4P4P7P4P4P4P8 <td>generating less waste (STA)fractions/yearP21Disposable plastic cutlery and beverages replaced with easily degradable materials (STA)kg plastic waste/passP13Kg plastic waste/passP21P31P31P31P31P31P31P31P31P42P31P42P31P42P31P41P51P51P6P2P61P71<td>generating less waste (STA)fractions/year$P2$11Disposable plastic cutlery and beverages replaced with easily degradable materials (STA)$P1$3N/AP2111Maste/passP211P312P312P312P312P312P311P421P311P311P411P511P511P611P711P311P411P511P511P611P711P611P711P711P711P711P711P711P711P721P721P721P711P721P711P711P711P711P711P711P711P721P71<</td></td>	generating less waste (STA)fractions/yearP21Disposable plastic cutlery and beverages replaced with easily degradable materials (STA)kg plastic waste/passP13Kg plastic waste/passP21P31P31P31P31P31P31P31P31P42P31P42P31P42P31P41P51P51P6P2P61P71 <td>generating less waste (STA)fractions/year$P2$11Disposable plastic cutlery and beverages replaced with easily degradable materials (STA)$P1$3N/AP2111Maste/passP211P312P312P312P312P312P311P421P311P311P411P511P511P611P711P311P411P511P511P611P711P611P711P711P711P711P711P711P711P721P721P721P711P721P711P711P711P711P711P711P711P721P71<</td>	generating less waste (STA)fractions/year $P2$ 11Disposable plastic cutlery and beverages replaced with easily degradable materials (STA) $P1$ 3N/AP2111Maste/passP211P312P312P312P312P312P311P421P311P311P411P511P511P611P711P311P411P511P511P611P711P611P711P711P711P711P711P711P711P721P721P721P711P721P711P711P711P711P711P711P711P721P71<

Table 19 Actions related to improve waste management of the port infrastructures and related indicators.

Table 20 summarizes relevant/reference case studies for actions aimed at decreasing the footprint of waste management and production at Adrigreen ports.

1

General action	Specific action	Metrics	Port reference case studies			
Promoting waste prevention and recycling	Economic incentives for recycling more and generating less waste		Port of Rotterdam.			
Waste pollution prevention	Disposable plastic cutlery and beverages replaced with easily degradable materials	kg plastic waste/passenger	P1 port (this study). Website port of Antwerp.			
Promoting waste recycling	Training of employees on recycling	tons of waste tractions/vear l				
Promoting waste recycling	Instructions for waste separation at the passenger terminal	kg/passenger	Common practice at passenger terminals.			
Waste pollution prevention	Monitoring of waste production	Waste produced (tons, tons/passenger)	Website port of Genoa.			
Promoting waste reuse	Use of environmentally friendly asphalt for repaving parking lots and port area	or repaving parking lots emissions of GHG and				
GHG = Greenhouse Gases						

Table 20 Reference case studies for actions aimed at decreasing the footprint of waste production at port infrastructures.

References

Aalborg Port Passive housing. Available at

Aeroporti di Roma. — . Cogeneration. Available at <u>https://www.adr.it/web/aeroporti-di-roma-en-/azn-</u> cogeneration

Airports council international (ACI). — . Airport environment courses. Available at https://www.olc.aero

Airports Council international (ACI). 2012. Guide to Airport Performance Actions. Available at http://www.aci.aero/Media/aci/downloads/ACI_APM_Guidebook_2_2012.pdf

Amsterdam Port. App control light. Available at <u>https://www.portofamsterdam.com/en/news/app-</u> <u>control-light-intensity/</u>

Amsterdam Port. Sustainable and circular Building. Available at <u>https://www.portofamsterdam.com/en/news/port-amsterdam-opens-sustainable-and-circular-</u> <u>building</u>

Antwerp Port. Climate action. Available at https://www.portofantwerp.com/en/climate-action

- Antwerp Port. Plastic free. Available at <u>https://www.portofantwerp.com/en/news/plastic-free-even-</u> after-may
- Bauleo, L.; Bucci, S.; Antonucci, C.; Sozzi, R.; Davoli, M.; Forastiere, F.; Ancona, C. 2019. Long-term exposure to air pollutants from multiple sources and mortality in an industrial area: a cohort study. Occupational and environmental medicine, 76(1), pp.48-57.
- Baxter, G.; Srisaeng, P.; Wild, G. 2018. An assessment of airport sustainability, part 2—energy management at Copenhagen Airport. *Resources*, 7(2), p.32.
- Baxter, G.; Srisaeng, P.; Wild, G. 2019. An assessment of airport sustainability: part 3—water management at Copenhagen Airport. *Resources*, *8*(3), p.135.
- Bilbao Port. Led Lightning. Available at <u>https://www.bilbaoport.eus/en/news/port-authority-bilbao-approves-new-project-save-40-lighting/</u>

Civil + Structural Engineer. 2008. Boston airport tests warm-mix asphalt. Available at https://csengineermag.com/boston-airport-tests-warm-mix-asphalt/

- Copenhagen Airport. 2018. Group annual report 2018. Available at <u>https://www.cph.dk/495470/globalassets/8.-om-cph/6.-investor/arsrapporter/2018/cph-annual-</u> <u>report-2018_uk_web.pdf</u>
- D'Angelo, J.; et al. 2008. Warm-mix asphalt: European practice. Available at <u>https://international.fhwa.dot.gov/pubs/pl08007/pl08007.pdf</u>
- De Castro Carvalho, I.; Calijuri, M.L.; Assemany, P.P.; e Silva, M.D.F.M.; Neto, R.F.M.; da Fonseca Santiago, A.; de Souza, M.H.B. 2013. Sustainable airport environments: a review of water conservation practices in airports. *Resources, Conservation and Recycling, 74*, pp.27-36.

Delhi Airport. 2021. Available at https://www.newdelhiairport.in/corporate/our-company/environment

- Dominici Loprieno, A.; Scalbi, S.; Tonon, D.; Zamagni, A. 2017. Update- Italian database emission factors. Available at <u>https://climfoot-project.eu/download/689</u>
- ESPO. 2020. Environmental Report 2020 EcoPortsinSights 2020. Available at https://www.espo.be/news/espo-publishes-the-2020-environmental-report-for-t
- Fileni, L., Mancinelli, E., Morichetti, M., Passerini, G., Rizza, U. and Virgili, S., 2019. Air pollution in Ancona harbour, Italy. *WIT Transactions on The Built Environment*, *187*, pp.199-208. doi:10.2495/MT190181
- Finavia. 2018. At Finnish airports, apron buses run on waste and residues 610 tons of emissions reduced with renewable fuel. Available at <u>https://www.finavia.fi/en/newsroom/2018/finnish-airports-apron-buses-run-on-waste-and-residues</u>
- Finavia. 2019. Good news for electric car drivers! Over 60 more charging stations at Helsinki Airport. Available at <u>https://www.finavia.fi/en/newsroom/2019/good-news-electric-car-drivers-over-60-more-charging-stations-helsinki-airport</u>
- Genoa Port. Marketing communication. Available at <u>https://www.portsofgenoa.com/en/marketing-</u> <u>communication/news-en/2570-new-port-waste-management-plan.html</u>

- Glasgow Airport. 2019. Glasgow Airport helps put a lid on single-use plastics by giving staff refillable water bottles. Available at <u>https://www.glasgowairport.com/media-centre/glasgow-airport-helps-</u> <u>put-a-lid-on-single-use-plastics-by-giving-staff-refillable-water-bottles/</u>
- Gobbi, G.P.; Di Liberto, L.; Barnaba, F. 2020. Impact of port emissions on EU-regulated and nonregulated air quality indicators: The case of Civitavecchia (Italy). Science of The Total Environment, 719, p.134984.
- Gothenburg Port. Solar power. Available at <u>https://www.portofgothenburg.com/news-room/press-</u> releases/port-of-gothenburg-invests-in-solar-power-panels/
- European Commission. 2015. Green and Effective Operations at Terminals and in Ports. Available at https://cordis.europa.eu/project/id/285687/reporting
- International Civil Aviation Organization (ICAO). —a. Waste management at airports- ECO AIRPORT TOOLKIT- Case studies. Available at <u>https://www.icao.int/environmental-</u> <u>protection/Documents/ecoairports/Final%20Waste_Management_Case_Studies.pdf</u>
- International Civil Aviation Organization (ICAO). —b. Waste management at airports- ECO AIRPORT TOOLKIT. Available at <u>https://www.icao.int/environmental-</u> <u>protection/documents/waste_management_at_airports_booklet.pdf</u>
- International Civil Aviation Organization (ICAO). —c. A Focus on the production of renewable energy at the Airport site - ECO AIRPORT TOOLKIT. Available at <u>https://www.icao.int/environmental-</u> <u>protection/Documents/Energy%20at%20Airports.pdf</u>
- International Civil Aviation Organization (ICAO). —d. ICAO launches 1.2MW solar-at-gate pilot project in Cameroon to reduce aircraft CO2 emissions during ground operations. Available at <u>https://www.icao.int/Newsroom/Pages/ICAO-launches-1.2MW-solar-at-gate-pilot-project-in-</u> <u>Cameroon-to-reduce-aircraft-CO2-emissions-during-ground-operations.aspx</u>
- JadeWaserPort. . Energy consumption management tool. Available at <u>https://sustainableworldports.org/project/jadeweserport-port-energy-consumption-management-</u> <u>tool/</u>
- Koffi, B.; Cerutti, A.; Duerr, M.; Iancu, A.; Kona, A.; Janssens-Maenhout, G. 2017. CoM Default Emission
 Factors for the Member States of the European Union Version 2017, European Commission, Joint
 Research Centre (JRC) [Dataset]. Available at <u>http://data.europa.eu/89h/jrc-com-ef-comw-ef-2017</u>

Koper Port. — . Energy efficient. Available at <u>https://luka-kp.si/eng/news/single/on-the-road-to-an-</u> <u>energy-efficient-port-3675</u>

Leonardo da Vinci Airport. — . Fiumicino – Aeroporti di Roma. Available at <u>https://www.adr.it/web/aeroporti-di-roma-en/pax-fco-</u> <u>fiumicino?p_p_id=it_txt_adr_cookiepolicy_web_portlet_AdrCookiePolicyBannerPortlet&p_p_lifecycl</u> <u>e=1&p_p_state=normal&p_p_mode=view&_it_txt_adr_cookiepolicy_web_portlet_AdrCookiePolicy</u> <u>BannerPortlet_javax.portlet.action=%2Fmanage_cookies</u>

- London Stansted Airport. 2010. Making a material difference London Stansted Airport Waste Management Strategy 2010-2015. Available at <u>https://live-webadmin-</u> <u>media.s3.amazonaws.com/media/3414/waste-strategy-stansted.pdf</u>
- Mancinelli, E., Canestrari, F., Graziani, A., Rizza, U. and Passerini, G., 2021. Sustainable Performances of Small to Medium-Sized Airports in the Adriatic Region. *Sustainability*, *13*(23), p.13156. <u>https://doi.org/10.3390/su132313156</u>
- Marseille Port. Available at <u>https://www.investinprovence.com/en/news/first-french-marine-</u> <u>geothermal-energy-plant-opened-at-euromediterranee-marseille</u>
- Massport. 2018. Sustainable Massport Annual sustainability & resiliency report. Available at https://www.massport.com/media/2774/massport-annual-sustainability-and-resiliency-report-2018_lr.pdf
- Oficina Catalana del Canvi Climàtic. 2019. Practical guide for calculating greenhouse gas (GHG) emissions. Available at

https://canviclimatic.gencat.cat/web/.content/04_ACTUA/Com_calcular_emissions_GEH/guia_de_c alcul_demissions_de_co2/190301_Practical-guide-calculating-GHG-emissions_OCCC.pdf

Ortega Alba, S.; Manana, M. 2016. Energy research in airports: A review. *Energies*, *9*(5), p.349.

Ostend Port. Available at https://www.offshore-energy.biz/nemos-wec-prototype-arrives-to-ostend/

Rotterdam Port. Solar power in the port. Available at <u>https://www.portofrotterdam.com/en/news-and-</u> press-releases/solar-power-in-the-port

Rotterdam Port. Maritime training center. Available at <u>https://www.portofrotterdam.com/en/news-</u> and-press-releases/huge-maritime-training-centre-to-open-in-rotterdam

Rotterdam Port. Ship Index. Available at <u>https://www.portofrotterdam.com/en/news-and-press-</u>

releases/five-years-of-the-environmental-ship-index-esi

SEA energia. 2019. Malpensa plant. Available at http://www.sea-energia.eu/en/plants/malpensa-plant

Seattle Port. Maritime recycling program. Available at <u>https://www.portseattle.org/programs/maritime-recycling-program</u>

Torricella, N.; et al. — . A water quality monitoring network for environmental management of port areas. An example from the Port of Venice.

Tyne Port. Low energy lightning. Available at <u>https://www.britishports.org.uk/news/port-of-tynes-low-</u> <u>energy-lighting</u>

Valencia Port. — . Green technologies. Available at <u>https://www.fundacion.valenciaport.com/en/project/greencranes-green-technologies-and-eco-</u> <u>efficient-alternatives-for-cranes-and-operations-at-port-container-terminals-2/</u>

Vancouver port. Electricity with renewables. Available at https://www.portvanusa.com/environment/port-purchases-100-percent-of-electricity-with-renewable-energy-certificates/

Venice Port. — . Porto efficienza energetica. Available at <u>https://www.port.venice.it/it/il-porto-per-</u> <u>efficienza-energetica.html</u>

Venice Port. — . Training. Available at <u>https://www.port.venice.it/en/training.html</u>

White, G. 2013. Developing warm mix asphalt for airports. Available at http://www.aapaq.org/docs/FPC2013/D1S6-01P-White--Warm-mix-asphalt-for-airports.pdf

World Health Organization (WHO). 2013. Review of evidence on health aspects of air pollution – REVIHAAP. Available at <u>https://www.euro.who.int/__data/assets/pdf_file/0020/182432/e96762-</u> <u>final.pdf</u>