

NET4mPLASTIC PROJECT Activity 4.2 D 4.2.2

Identification and classification of plastic debris via Image analysis and Fourier-Transform Infrared Spectroscopy

Rev.0 2022/06/09

European Regional Development Fund

CONTRIBUTING PARTNERS UNITS

INDEX

1	Int	roduction	.3					
2	Ma	Aaterials and methods						
	2.1	Samples identification and classification	.3					
	2.2	Sample size	.3					
	2.3	Sample composition	.3					
3	Re	sults	.6					
4	Discussion							
R	eferen	ces	11					

1 Introduction

This document reports on the analysis carried out on samples collected by Croatian partners and sent to the University of Trieste for analysis on May 04, 2022. Collection sites were not specified but can be speculated from the names on the sample holders (Rab, Susak, Klimno)

2 Materials and methods

2.1 Samples identification and classification

Samples in the form of debris of different composition, size and shape were received inside 13 sample holders. Each container was identified by a text string ("Rab", "Susak", "Klimno") followed by a number. Containers were opened; digital picture (with an appropriate scale) of their content was taken, then samples were counted and classified according to their color and shape. A unique id number was assigned to every object inside the package (for instance: R for Rab, S for Susak, K for Klimno, followed by the container number and -a, b, c etc.). The type of samples was defined as "pellet" (PL), "fragment" (FR) or "filament" (FL). Objects labeled as "pellets" are spherical or cylindrical in shape, and typically are small granules used as raw material in plastic production. Objects labeled as "filaments" are thin and have a high aspect ratio (ratio between longer and shorter dimensions). Irregular objects were categorized as "fragments". The color was attributed according to the best match to the following: black (BLK), blue (BLU), brown (BRW), green (GNR), red (RED), sky blue (SKY), transparent (TRS), white (WHT), yellow (YEL).

2.2 Sample size

Samples sizes (dimensions and area) were measured directly on the pictures with the help of an image-editing software (GIMP); aspect ratio was defined as the ratio between the longer and the shorter measured dimension.

2.3 Sample composition

Sample composition was assessed by means of Fourier-Transform Infrared Spectroscopy (FT-IR). FT-IR spectra were acquired via a Thermo-Nicolet Nexus 470 spectrometer, equipped with an Attenuated Total Reflectance (ATR) accessory, in the 4000-500 cm⁻¹ spectral range. Different plastic materials were identified by comparison with known reference spectra of the most common polymers; the most important vibrational bands were used as fingerprints as suggested by Jung et al (2018). These bands are shown in Table 1Table 3.

Other compounds (such as sand, calcium carbonate or cellulose) were identified by their characteristic vibrational bands reported in Table 2. Strong peaks in the 1400-1440 cm⁻¹ region (CaCO₃ vibrational mode 2) or in the 1100 cm⁻¹ region (SiO₂), when superimposed to the polymer spectra, were related to the presence of sand (carbonate or siliceous origin) in the plastic debris. The ratio between the peak intensity and the main peak of the polymer spectrum was also calculated. Spectra with only a broad, not well-defined vibrational band in the 1000-1050 cm⁻¹ region (compatible with C-O-C stretch in polysaccharides) were assigned (also after visual examination of the sample) to fragments of algae or paper (cellulose). Samples with only CaCO₃ vibrational bands (aragonite?) were identified as fragments of shells or exoskeleton (biological origin).

polymer	Vibrational bands (cm ⁻¹)	assignment
Low-density	2915 / 2845	CH ₂ stretch (#)
polyethylene (LDPE);	1472 / 1462	CH ₂ bend (NB: single peak in HDPE;
High-density		multi peak in LDPE)
polyethylene (HDPE)	730 / 717	CH ₂ rock
	2915 / 2845	CH ₂ stretch
	1472 / 1462	CH ₂ bend
	1377	CH₃ bend
	730 / 717	CH ₂ rock
Polypropylene (PP)	2950 / 2915 / 2838	CH & CH ₂ stretch (#)
	1455	CH ₂ bend
	1377	CH₃ bend
	1166	CH bend; CH₃ rock; C-C stretch
	997	CH₃ rock; CH₃ bend; CH bend
	972	CH₃ rock; C-C stretch
	840	CH₂ rock; C-CH₃ stretch
Polystyrene (PS)	3024	arom. CH stretch
	2847	CH ₂ stretch
	1601	arom. ring stretch
	1492	arom. ring stretch
	1451	CH ₂ bend
	1027	arom. CH bend
	694	arom. ring out of plane bend (#)
Acrylonitrile butadiene	2922	CH & CH ₂ stretch
styrene (ABS)	1602	arom. ring stretch
	1494	arom. ring stretch

Table 1: vibrational bands used to identify the most common polymers. Most intense peak for each polymer is labeled with (#)

	1452	CH ₂ bend
	966	=C-H bend
	759	arom. ring out of plane bend (#)
Ethylene Vinyl acetate	2917 / 2848	CH & CH ₂ stretch (#)
(EVA)	1740	C=O stretch
	1469	CH ₂ & CH ₃ bend
	1241	C-O bend
	1020	CH ₂ rock
	720	CH ₂ rock
Polyurethane (PU)	2865	CH & CH ₂ stretch
	1731	C=O stretch (#)
	1531	C-N stretch
	1451	CH ₂ bend
	1223	C(=O)O stretch
Polyamide (PA)	3298	NH stretch
	2932 / 2858	CH & CH ₂ stretch
	1634	C=O stretch (Amide-I) (#)
	1538	NH bend, C-N stretch (Amide-II)
	1464	CH ₂ bend
	1372	CH ₂ bend
	1274	NH bend, C-N stretch
	1199	CH ₂ bend
	687	NH bend, CO bend

Table 2: vibrational bands used to identify other compounds

	Vibrational bands (cm ⁻¹)	assignment
CaCO ₃	1400 - 1450	CaCO₃ v3 mode
	855 - 875	CaCO₃ v2 mode
SiO ₂	1100	Si-O-Si stretch (asymm)
	801	Si-O-Si stretch (symm)
	471	Si-O bend
algae, cellulose	1000 - 1030	C-O-C (polysaccharides?)

3 Results

Sample classification, size and composition is reported in Table 3. A total number of 51 debris were categorized. Type, shape and color codes are those reported in para. 2.1 and 2.2.

The composition was assessed as reported in para 2.3.

Envelope		ID1	ID2	Туре	color	Dim	Aspect	Composition	SiO ₂	CaCO ₃
ID						L1	ratio	-		
						(mm)				
Rab	1-5	R15	а	FR	BLU	1.3	1.6	PET	х	
Rab	1-5	R15	b	FR	BLU	1.4	2.0	PET	х	
Rab	2-9	R29	а	FR	SKY	1.8	2.0	PP	х	
Rab	2-9	R29	b	FR	SKY	0.8	1.0	PP	х	
Rab	2-9	R29	С	FL	WHT	9	7.5	PE		х
Rab	2-9	R29	d	FL	WHT	5	5.0	PE		х
Rab	2-9	R29	е	FL	GRN	10	50.0	PET		
Rab	3-9	R39	а	FR	BLU	3.2	2.1	PET		
Rab	3-9	R39	b	FR	WHT	6	1.5	not id		
Rab	3-9	R39	С	FR	WHT	2.1	1.1	PE	х	х
Rab	3-9	R39	d	FR	BRW	1.6	1.6	SiO		
Rab	4-5	R45	а	FR	RED	3.4	1.8	PET	х	х
Rab	4-5	R45	b	FR	TRS	10.2	4.6	PP	х	х
Rab	4-9	R49	а	FR	TRS	2.4	1.4	CaCO3		
Rab	4-9	R49	b	FL	WHT	14	70.0	PA		
Rab	5-5	R55	а	FR	TRS	7.4	2.4	PE		х
Susak	1-9	S19	а	FR	BLU	15	10.7	PE		х
Susak	1-9	S19	b	FR	BLU	7.2	2.7	PP	х	х
Susak	1-9	S19	С	FR	BRW	2.5	4.2	PVC		х
Susak	1-9	S19	d	FL	GRN	28	140.0	PA		
Susak	1-9	S19	е	FL	GRN	31	155.0	PA		
Susak	1-9	S19	f	FL	GRN	33	165.0	PA		
Susak	2-9	S29	а	PL	BLK	4.9	1.0	PE		х
Susak	2-9	S29	b	FR	BLU	2.9	1.9	PVC		х
Susak	2-9	S29	С	FR	BLU	2.8	1.2	PVC		х
Susak	2-9	S29	d	FR	BLU	2.4	1.6	PVC		х
Susak	2-9	S29	е	FL	TRS	6.2	20.7	not id		
Susak	2-9	S29	f	FL	WHT	12.6	25.2	natural fiber		
Susak	3-9	S39	а	FR	BLU	17	2.7	PE	Х	х

Table 3: sample ID, classification and size

Susak	3-9	S39	b	FR	BLU	12.2	1.2	PE	х	х
Susak	3-9	S39	С	FR	GRN	9.1	2.1	PE	х	х
Susak	3-9	S39	d	FL	RED	22	31.4	natural fiber		
Susak	3-9	S39	е	FL	TRS	40	133.3	fibra vetro?		
Susak	4-9	S49	а	FR	TRS	20.5	1.4	PET		
Susak	4-9	S49	b	FR	BRW	1.7	1.1	natural fiber		
Susak	4-9	S49	С	FR	BRW	1.6	1.8	natural fiber		
Susak	4-9	S49	d	FR	BRW	1.3	1.3	natural fiber		
Susak	4-9	S49	е	FR	BLU	1.9	1.6	natural fiber		
Susak	4-9	S49	f	FR	YEL	2.3	1.5	CaCO3		
Susak	5-9	S59	а	FL	BRW	2.3	23.0	PET	х	
Susak	5-9	S59	b	FL	BRW	5.1	51.0	PET	х	
Klimno	4-5	K45	а	FL	WHT	51	56.7	not id		
Klimno	4-5	K45	b	FL	WHT	11.5	12.8	not id		
Klimno	4-5	K45	С	FL	WHT	18.4	20.4	not id		
Klimno	4-5	K45	d	FL	WHT	6.3	7.0	not id		
Klimno	4-5	K45	е	FL	WHT	4.9	5.4	not id		
Klimno	4-5	K45	f	FL	WHT	4	4.4	not id		
Klimno	4-5	K45	g	FL	WHT	8.1	9.0	not id		
Klimno	4-5	K45	h	FL	WHT	6.7	7.4	not id		
Klimno	4-5	K45	i	FL	WHT	4	4.4	not id		
Klimno	4-5	K45	j	FL	WHT	4.7	5.2	not id		

4 Discussion

Among the different polymers produced worldwide, the most common plastics found in marine waste include polyethylene (PE), polypropylene (PP), polyvinylchloride (PVC), polystyrene (PS), polyurethane (PUR), polyethylene terephthalate (PET) and nylon (polyamide – PA) (Thushari 2020, Solomon 2016, Andrandy 2014). Table 4 shows the common applications of these plastics and their specific gravity.

Plastic type		Common application	Specific gravity
Low density polyethylene	LDPE	Plastic bags, film, packaging	0.91 - 0.93
High density polyethylene	HDPE	Bottle caps, storage containers	0.92 - 0.95
Polypropylene (PP)	РР	Ropes, storage containers, bottle caps	0.90 - 0.92
Polystyrene - expanded	EPS	Boxes, packaging	0.01 - 1.00
Polystyrene	PS	Utensils, cups	1.05 - 1.10
Polyvinyl chloride	PVC	Pipes, containers, insulators, films	1.20 – 1.30
Polyamide (Nylon)	PA	Ropes, fishing nets	1.15 - 1.20
Polyethylene terephthalate	PET	Bottles	1.35 - 1.40
Polyurethane	PU	Adhesives, foams	variable

Table 4: common	n plastics f	found in maria	ie waste, theii	common application	and specific gravity
-----------------	--------------	----------------	-----------------	--------------------	----------------------

A total number of 51 fragments have been categorized by means of visual analysis and then identified by FTIR. Of these, 53% were labeled as "fragments" (irregular shape), 2% as "pellets" (cylindrical or spherical) and 45% as "filaments" (very elongated, thin sheets). Fragments and filaments are most likely secondary microplastics (originated from the breakdown of large plastic items), while pellets (which represents almost the 20% of the total) can be categorized as primary microplastics (originally and intentionally manufactured in that size). These pellets are preproduction plastic pellets, made of raw resin, which are usually melted and used in the manufacturing of everyday plastic items. They somehow entered the environment before plastic objects production stage (most likely lost during transportation) and were subsequently found in areas of marine waste concentration. A summary of debris categories, sizes and aspect ratio is reported in Figure 1 and Figure 2. It is possible to notice that the majority of debris are between 2

and 5 mm (considering their greater measured size), and roughly half have an aspect ratio between 1 and 5. About 30% of the collected object are clearly elongated (aspect ratio > 10).

Figure 1 – debris classification, according to shape (left) and composition (right)

Figure 2 – debris size and aspect ratio

About 75% of the collected objects were plastic debris, while 25% were non-plastic (calcium carbonate, silica or glass and natural fibers/paper). Chart showing composition and color of analyzed fragments are shown in Figure 3 and Figure 4.

In the 18% of these plastic debris it was possible to identify a clear signal related to the presence of SiO₂; in the 12% CaCO₃ signal was noticeable; 14% of the samples have both signals. Given their sampling location (most likely Adriatic beaches – there was no information about the sampling location on the envelopes) it is possible to speculate a contamination of the samples with sand and/or shells.

Figure 3 – relative abundance of polymers among the analyzed plastic objects

Figure 4 –colors of the analyzed plastic objects

References

Jung et al., Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms, Marine Pollution Bulletin 127: 704-716 (2018)

Thushari and Senevirathna, Plastic pollution in the marine environment, Heliyon 6: e04709 (2020), doi.org/10.1016/j.heliyon.2020.e04709

Solomon and Palanisami, Microplastics in the Marine Environment: Status, Assessment Methodologies, Impacts and Solutions, Journal of Pollution Effects & Control 4: 1000161 (2016), doi.org/ 10.4172/2375-4397.1000161

Andrandy, Microplastics in the marine environment, Marine Pollution Bulletin 62: 1596-1605 (2011), doi.org/10.1016/j.marpolbul.2011.05.030

Plastics-Europe, Plastics: the facts (2020): An analysis of European plastics production, demand and waste data, https://www.plasticseurope.org/it/resources/publications/4312-plastics-facts-2020