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Abstract: Anthropogenic marine debris (AMD) represent a global threat for aquatic environments.
It is important to locate and monitor the distribution and presence of macroplastics along beaches to
prevent degradation into microplastics (MP), which are potentially more harmful and more difficult
to remove. UAV imaging represents a quick method for acquiring pictures with a ground spatial
resolution of a few centimeters. In this work, we investigate strategies for AMD mapping on beaches
with different ground resolutions and with elevation and multispectral data in support of RGB
orthomosaics. Operators with varying levels of expertise and knowledge of the coastal environment
map the AMD on four to five transects manually, using a range of photogrammetric tools. The initial
survey was repeated after one year; in both surveys, beach litter was collected and further analyzed
in the laboratory. Operators assign three levels of confidence when recognizing and describing
AMD. Preliminary validation of results shows that items identified with high confidence were almost
always classified properly. Approaching the detected items in terms of surface instead of a simple
count increased the percentage of mapped litter significantly when compared to those collected.
Multispectral data in near-infrared (NIR) wavelengths and digital surface models (DSMs) did not
significantly improve the efficiency of manual mapping, even if vegetation features were removed
using NDVI maps. In conclusion, this research shows that a good solution for performing beach AMD
mapping can be represented by using RGB imagery with a spatial resolution of about 200 pix/m for
detecting macroplastics and, in particular, focusing on the largest items. From the point of view of
assessing and monitoring potential sources of MP, this approach is not only feasible but also quick,
practical, and sustainable.

Keywords: unmanned aerial vehicle (UAV); anthropogenic marine debris (AMD); marine litter;
macroplastics; microplastics; multispectral camera

1. Introduction

The presence of anthropogenic marine debris (AMD) along coastlines globally is one
of most critical pollution issues to date [1–8]. In particular, plastics represent from 60 to 95%
of the global marine litter in the oceans [9–12]; therefore, understanding the dynamics in
which they originate, move, and accumulate is crucial [13]. The monitoring of plastic debris
abundance in the marine environment [14–16] is important for assessing the potential
impact of measures adopted to reduce the presence of plastic AMD. This work can be
complicated by large spatial and temporal heterogeneity in the amount of plastic debris,
as pointed out by Ryan et al. [17]. Surveys at sea can sample floating [18] and suspended
debris using a manta trawl net or sample litter on the seabed [19] with submersibles or
remote-operated vehicles or trawling equipment. However, most of the studies show that
AMD accumulates along beaches, and hence beach surveys [20,21] are not only necessary
but also represent the most common monitoring method for macro-debris. That said,
beach cleanups can alter litter loads and abundance on beaches, and beach dynamics can

Drones 2021, 5, 140. https://doi.org/10.3390/drones5040140 https://www.mdpi.com/journal/drones

https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0002-7301-5508
https://orcid.org/0000-0002-9210-9745
https://orcid.org/0000-0002-8977-3864
https://doi.org/10.3390/drones5040140
https://doi.org/10.3390/drones5040140
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/drones5040140
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones5040140?type=check_update&version=2


Drones 2021, 5, 140 2 of 18

introduce additional variables in monitoring changes in the amount and composition of
plastic debris [22]. Spatial distribution patterns of litter in sandy littorals have thus been
investigated [23,24], finding that differences are present, with embryo dune and mobile
dune habitats showing the highest frequency of litter [25]. Plastic AMD follows these
distribution patterns; modeling approaches can help to predict both the distribution [26]
and marine litter storm wash-outs [27].

On the basis of size, it is possible to divide plastic fragments into micro-, meso-, and
macroplastics. In the literature, several boundary values between these classes have been
proposed, both from scholars and institutional reports (see Hartmann et al. [28], Figure 1).
Ryan et al. [17], for instance, adopted the following classification: microplastic (MP, <5 mm),
mesoplastic (2–20 mm), and macroplastic (>20 mm). On the other hand, the Guidance on
Monitoring of Marine Litter in European Seas [29] suggested a different threshold (i.e.,
2.5 cm) for macroplastics. Micro-, meso-, and macroplastics are strictly connected to each
other, because fragmentation and degradation processes boost the concentration of MPs
in the marine environment that usually enter the ocean as macroplastics [30,31], even if a
release of MPs can also come from other sources, such as solid waste landfill leachate [32]
and tributary river ecosystems [33]. The European Union has financed various projects
on the matter of MPs and the presence of solid litter inside the Adriatic Sea. In particular,
among the multitude of projects, the DeFishGear project aimed to address the problem
of marine litter pollution and the consequent economic impact on coastal communities,
to monitor and reduce the quantity of MPs in the marine environment, and to develop
an approach for the measurement and monitoring of marine litter and MPs on coasts, in
the sea, and on seabeds [34]. The average beach litter density found for the Adriatic and
Ionian macroregion within this study is 0.67 items/m2 [35]. Using an approach based on
the Clean-Coast Index (CCI) [36] for computing the local beach cleanliness as a parameter to
evaluate the local pollution, the cleanliness of most of the surveyed beaches was classified
as clean or moderate. Hence, characterizing the presence of macroplastics along beaches is
crucial in order to detect potential sources of future MPs as well as to develop and organize
impact mitigation plans and specific litter removal interventions. For this task, various
techniques can be used [37]; in particular, we can consider (i) direct methods that require
mapping carried out by operators on the beach, whereas (ii) indirect ones can be performed
in a remote way in less time.

Unmanned aerial vehicles (UAVs) provide a flexible platform for carrying compact
digital cameras to acquire pictures of the coastal environment [38–40]. A quick remote
method can hence be represented by the use of UAVs equipped with instruments able to
detect the AMD. Images collected during UAV missions can thus be used for identification,
even in real time. The level of detail in detecting the AMD is related to the ground sample
distance (GSD), which depends on the characteristics of the camera used for acquiring
pictures and on the flight altitude of the drone. UAV-based images have been used to
describe dune morphodynamics [38,41], including cases of small formations [42,43] in the
coastal environment, and therefore represent an innovative, efficient, and cost-effective tool
for litter mapping [44–46]. Moreover, the use of drones with an onboard real-time kinematic
(RTK) global navigation satellite system (GNSS) receiver reduces, or even eliminates,
the need for deploying ground control points (GCPs) during the acquisition of images in
order to achieve a final centimeter-level accuracy [47–49] in positioning AMD items.

The NET4mPLASTIC project aims to collect data on the distribution and composition
of MPs along the Croatian and Italian coastal and marine areas. In fact, MPs have a great
impact on species, environment, water quality, ecosystems, and the economy since they
are present everywhere in the marine environment [31], fisheries, and aquaculture [30].
Hence, one of the project purposes is to investigate strategies for the mapping of potential
MP sources on the beaches.

Since the deployment of UAVs is quite simple and allows one to cover a broad portion
of beach, in this research, we focused on the use of different photogrammetric products
retrieved by the image processing of UAV-acquired datasets. Moreover, we assessed the
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results achieved (i) by varying the spatial resolution of images, (ii) by using information
provided by an elevation model, and (iii) by using multispectral (MS) data. Finally, we used
two operators with a different level of expertise in the knowledge of the coastal environment
every time. The novelty of this work is exploring all of these aspects to describe the optimal
method for performing UAV-based mapping of litter and macroplastics on the beaches.

Figure 1. Description of the methodology adopted in this work.

2. Materials and Methods

In this section, we present the methodology from the in situ data collection to the
mapping and classification of the marine litter based on UAV-derived data. Figure 1
summarizes the overall set of information acquired and processed to obtain (i) the mapping
of AMD and (ii) a ground truth dataset.

2.1. Test Site Description

In this work, we selected a test site located in the Natura 2000 site of Sacca di Goro—
Foce del Po di Volano in Northern Italy (Figure 2a). This site is one of the NET4mPLASTIC
project sites used for characterizing the origin, abundance, distribution, and potential
accumulation area of MPs and co-pollutants in marine systems. In fact, Po river (652 km
long) is the main Italian river, and its basin covers an area of 71,000 km2, which flows
through 3200 municipalities in 7 regions. Since the Po river collects the water of the entire
basin of the Pianura Padana, it carries a notable amount of material into the Adriatic
Sea. In this way, a test site within this river delta (Figure 2b) represents an area of high
macroplastic and litter accumulation. The examined coast stretch is situated in the northern
part of the Lidi di Comacchio, which is a well-known Italian seaside resort in the Northern
Adriatic Sea. The beach that is the focus of this research is at Lido di Volano, which is
located in a microtidal context, has a NNE-SSW orientation, and is dominated by low wave
energy. The beach consists of fine sand and has a morphology with well-developed single
swash bar systems. The beach width ranges between 20 and 60 m.

For the experiment, ten transects (i.e., sampling units) have been staked out (Figure 2c),
and 4 to 5 of them have been surveyed for the research presented here. Each transect had a
width of 10 m and an approximate length of 45–50 m, from the shoreline to the foredune.
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Figure 2. Location of the test site: (a) Po river delta in Northern Italy; (b) zone of the Natura 2000 site of Sacca di Goro—Foce
del Po di Volano; (c) the test site divided into transects. (background images from Google Earth).

2.2. In Situ Operations
2.2.1. UAV Image Acquisition

The acquisition of UAV image datasets has been performed using a DJI Phantom 4
RTK (DJI–P4RTK, Figure 3a) and a DJI Phantom 3 Professional (DJI–P3P, Figure 3b). Both
UAVs were provided with their own RGB camera (20 Megapixel for DJI–P4RTK and 12
Megapixel for DJI–P3P). The DJI–P3P was also equipped with a Micasense RedEdge M
multispectral camera (1.2 Megapixel) able to acquire data in the blue, green, red, red edge,
and near infrared (NIR) wavelengths. The main differences between the aircrafts were
(i) that the app used for the mission planning of DJI–P3P (Pix4D Capture) allowed us to fly
at a minimum altitude of 10 m above ground level, whereas the DJI–P4RTK app integrated
into the remote controller (GS RTK) had the limitation of a minimum altitude of 25 m,
and (ii) that the DJI–P4RTK was used to acquire image datasets with a centimeter-level
georeferencing accuracy due to an on-board multi-frequency, multi-constellation GNSS
receiver in RTK mode. A base receiver (DJI Mobile Station 2, Figure 3c) was set up on a
benchmark whose coordinates were surveyed using a Topcon GR-3 geodetic receiver in
Network-RTK (NRTK). Alternatively, an approach based on NRTK can also be used for
drone navigation. Ground control points (GCPs) were deployed using targets prior to
image acquisition and surveyed in NRTK mode (Figure 3d) in order to achieve a centimeter-
level accuracy for DJI–P3P image datasets as well. Each GCP position was collected through
a 30 s stop-and-go method. In this way, data collection was framed in the official Italian
reference system ETRS89–ETRF2000(2008.0). Topcon GR-3 in NRTK mode was also used
for the ground survey of beach litter (Figure 3e) as reported in Section 2.2.2.

The data collection was repeated twice, on 25 October 2019 and 5 November 2020.
Automatic flight missions were planned in order to map the test site extent at different
altitudes. In fact, the ground sample distance (GSD) was varied to assess mapping results.
Altitudes and corresponding GSDs are reported in Tables 1 and 2. Flight missions at very
low altitudes were focused on a smaller amount of transects.
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Figure 3. (a) DJI Phantom 4 RTK (DJI–P4RTK) aircraft; (b) DJI Phantom 3 Professional (DJI–P3P)
with Micasense RedEdge M multispectral camera; (c) setup of the base station receiver for RTK
operations of the DJI–P4RTK; (d) example of ground control point (GCP); (e) GNSS survey of GCPs
and litter items.

Table 1. Flight altitudes and ground sample distance (GSD)—survey in October 2019.

Aircraft Altitude Camera GSD Transects

DJI–P3P
10 m RGB camera ≈4 mm T.1 to T.5

10 m Micasense
RedEdge M ≈7 mm T.1 to T.5

DJI–P4RTK 25 m RGB camera ≈7 mm all

Table 2. Flight altitudes and ground sample distance (GSD)—survey in November 2020.

Aircraft Altitude Camera GSD Transects

DJI–P3P
10 m RGB camera ≈4 mm T.1 to T.4

10 m Micasense
RedEdge M ≈7 mm T.1 to T.4

DJI–P4RTK 25 m RGB camera ≈7 mm all

2.2.2. Direct Survey of Marine Litter: The Ground Truth Dataset

After flying the drone over the test site and before collecting the material, a litter
survey was performed at a level of transect, as previously mentioned in Section 2.2.1.
Items larger than 2.5 cm were surveyed, collecting both the position and a detailed picture.
Data acquired in this way were used to generate a database of AMD spatial distribution.
The ground truth dataset was created, combining the GNSS RTK position collected with
a description of the item derived from the picture. The color was also assessed. Figure 4
illustrates the position of items surveyed in each transect from T.1 to T.4 in 2020 (a similar
survey was performed in 2019).
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Figure 4. Ground truth dataset of surveyed litter items per transect (2020).

2.3. Data Processing and Analyses
2.3.1. Generation of Orthomosaics and DSMs

UAV image datasets were used to reconstruct a photogrammetric model of the beach.
For this task, we used Agisoft Metashape to generate the orthomosaic of test site transects.
Accurate georeferencing was obtained using RTK camera locations for DJI–P4RTK drone
or with a set of well-distributed ground control points (GCPs) for the non-RTK drone
DJI–P3P during image alignment. The workflow of data processing from acquired image
datasets to orthomosaics and the digital surface model (DSMs) is summarized in Figure 5.
In particular, we generated RGB and near-infrared (NIR) orthomosaics and the NDVI
map. Images with the smallest GSD—thus, for the configuration when flying at a 10 m
altitude with the DJI–P3P aircraft—were also used to reconstruct a DSM of the beach.
In fact, the elevation variation across the beach profile can provide additional information
useful for classifying the litter properly. Visualizing the DSM with hillshade rendering
or extracting cross-section profiles on the fly in a geographic information system (GIS)
environment may allow operators to evaluate the shape of items with more confidence.
However, since the generation of a DSM with a poorer spatial resolution on the ground
(higher GSDs) allowed one to identify and classify items of large dimension, we decided not
to generate DSMs for flights carried out at altitudes higher than 10m. All the georeferenced
orthomosaics and DSMs were exported to further proceed with image-based litter detection.
Products obtained after image processing are reported in Table 3.

Table 3. Image data processing outputs.

Aircraft Altitude Camera RGB Multispectral
Data DSM

Orthomosaic (NIR, NDVI)

DJI–P3P
10 m RGB camera yes no yes

10 m Micasense
RedEdge M yes yes no

DJI–P4RTK 25 m RGB camera yes no no



Drones 2021, 5, 140 7 of 18

Figure 5. Data processing for UAV image datasets.

2.3.2. Mapping and Classification of the Litter

Orthomosaics generated using different ground resolution datasets were used to
recognize the presence of litter items on the beach, together with NIR–NDVI data and
DSM. Since it is important to establish levels of operator uncertainty during this process,
we assumed 3 levels of confidence as follows:

• CL 1: the operator is sure that both the detection and the classification of the item are
correct; a description of the item is provided during the mapping process;

• CL 2: the operator is sure that the item is litter, but unsure about the type (difficult to
classify); a description of the item may be provided during mapping process;

• CL 3: the operator identifies something that probably is litter, but that may be also a
natural element that appears similar to litter on the orthomosaic; a description of the
item cannot be provided during mapping process.

Additionally, the level of experience and expertise of the operator in knowing the
coastal environment and recognizing the marine litter can be different. For this reason,
we selected two types of operators: operator 1 has almost no experience in marine litter
mapping and about geomorphological aspects of beaches, while operator 2 is skilled and
an expert in these fields. Operator 1 was different for the 2019 and 2020 surveys; operator 2
was the same for both surveys.

2.3.3. Collection of Beach Litter and Laboratory Analysis

After image acquisition, all the marine litter on the beach was collected for each
transect and divided into transect zones (e.g., dune, beach, see Figure 6). All the material
was analyzed in the laboratory to identify and classify each item according to the Master
List of Categories of Litter Items reported in Annex 8.1 of the Guidance on Monitoring of
Marine Litter in European Seas [29] (see Table 4).

Figure 6. Litter collected in transect T.2 in October 2019: (a) on the beach; (b) in the dune.
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Table 4. Laboratory analysis results for the litter collected in transect T.2 in October 2019.

Class Material Number

Zone: BEACH

G82 Artificial polymer materials 3
G124 Artificial polymer materials 1
G125 Rubber 1
G21 Artificial polymer materials 5
G24 Artificial polymer materials 1

G23 + G22 Artificial polymer materials 4
G100 + G23 Artificial polymer materials 1

G200 + G23 + G178 Glass/ceramics + Artificial
polymer materials + Metal 2

G11 Artificial polymer materials 1
G100 + G23 Artificial polymer materials 1

G13 Artificial polymer materials 2
G82 Artificial polymer materials 1

G34 + G79 + G89 Artificial polymer materials 16
G4 + G5 + G66 Artificial polymer materials 9

G90 + G79 Artificial polymer materials 10
G134 Rubber 1
G204 Glass/ceramics 1
G49 Artificial polymer materials 1

G148 + G156 Paper/Cardboard 6
G62 Artificial polymer materials 1
G126 Rubber 1

Total (with no natural vegetation-related elements) 69

Zone: DUNE

G82 Artificial polymer materials 16
G10 Artificial polymer materials 20

G21 + G8 + G7 Artificial polymer materials 2
G78 Artificial polymer materials 3
G45 Artificial polymer materials 2
G22 Artificial polymer materials 1
G14 Artificial polymer materials 5
G25 Artificial polymer materials 1

Total (with no natural vegetation-related elements) 50

3. Results
3.1. Validation of Image-Based Litter Description

In order to evaluate the accuracy with which operators described litter items, we carried
out a classification accuracy assessment. The description of the items identified by the
operators was compared with the detailed picture of the object when available (see Table 5).

Table 5. Litter items for which a picture of detail was captured in October 2019. Litter items for
which the operator descriptions were correct (October 2019 dataset).

Items with a Items
Picture of Detail Described Properly

CL 1 CL 2 CL 1 CL 2

Op. 1—P4RTK—25 m 18 12 18 (100%) 5 (42%)
Op. 2—P4RTK—25 m 15 15 15 (100%) 5 (33%)
Op. 1—P3P —10 m 24 17 24 (100%) 6 (35%)
Op. 2—P3P—10 m 22 11 22 (100%) 6 (55%)
Op. 1—P3P—10 m + MS 24 18 24 (100%) 6 (33%)
Op. 2—P3P—10 m + MS 28 18 28 (100%) 6 (33%)

These results shows that all of the CL 1 items were properly recognized and described
by the operators. Most of the CL 2 items were not described by the operators, due to the
higher level of uncertainty implicitly associated with the difference between assigning a
CL 1 or a CL 2 class. However, Figure 7 shows that only a few items were not properly
described by the operators, while most of them, when described, were properly recognized.
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Figure 7. Results of the accuracy assessment of operator descriptions.

3.2. First Campaign (2019)

The identification and classification of litter through a manual mapping based on
orthomosaics at different ground spatial resolution and with the additional information
provided by the near-infrared wavelengths produced the results reported in Figure 8. Both
operators preferred to assign CL 2 in most cases. In fact, the classification of litter type
was found to be generally hard. Larger items or items with a well-defined shape (e.g.,
bottles) are easy to identify and hence assigned CL 1. However, a variety of objects that are
quite different from the background sand texture are distinguishable, but not recognizable.
In addition, there is no guarantee that those objects are litter. Operator 1, less expert than
operator 2, preferred to assign CL 3 instead of CL 2 for many items, unsure of whether the
object was actually litter.

Figure 8. Number of items recognized through manual image mapping by different operators with
different image datasets (2019).

While identifying every piece of litter was not possible, litter collection provided the
total number of objects that were present in each transect at the time of the survey. Figure 9
shows the number of total items recognized by the operators using the different levels
of information available and those collected in the field. For transects T.2, T.3., and T.4,
the collection was extended up to the dune zone, where the largest items were collected.
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Figure 9. Number of items recognized and collected, per transect (2019).

The amount of AMD, when considering the number of items (i.e., count), is generally
underestimated with the sole exception of transect T.1. For transect one, the results of
operator 1 and operator 2 are consistent and comparable to the count of collected items.

3.3. Second Campaign (2020)

The second beach litter survey results are slightly different from the previous one.
Operator 1 assigned a high number of CL 3 (more than 80% of the total), likely due to
the lack of experience in distinguishing natural elements on a beach from potential litter
items. Operator 2, still maintaining a considerable percentage of CL 3 items, was able to
exploit their experience and knowledge of the beach environment morphology to classify
the items with higher confidence. In fact, the percentage of items with CL 3 is lower for
operator 2 than operator 1: it decreases from 86% to 39% for the dataset acquired with the
DJI–P3P at a 10 m altitude (see Figure 10).

Figure 10. Number of items recognized through manual image mapping by different operators with
different image datasets (2020).

Consistently, litter collection provided the actual number of objects that were present
in each transect at the time of the survey. Figure 11 shows the total amount of items
recognized by the operators. For most transects, operator 2 found a number of items
largely different from operator 1. This is due to the large attribution of CL 3 made by
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operator 1. Even if the total identified object count is better compared to the collected
ones than those identified by operator 2, in many cases, the additional items found by
operator 1 were not AMD. Giving operator 1 the option of using UAV pictures in addition
to the orthomosaic only, in fact, allowed him to exclude about 70 items that were noted
using solely the orthomosaic. UAV pictures provided a view of items from different angles,
helping the operator in deciding whether the item was in fact litter. However, under these
conditions, the mapping task became more time-consuming.

Figure 11. Number of items recognized and collected, per transect (2020).

3.4. Comparison in Terms of Area

Focusing on the number of items identified does not take into account the size of
each object. Here, we show the litter recognized by the operators with respect to the total
collected in terms of area. Moreover, we compare this with the simple count of the same
objects (2019 dataset, operator 1). Figure 12 shows that accounting for the surface actually
covered by each item on the orthomosaics increases the detection of the total AMD up to
more than 80% of the total collected. Larger items, in fact, are easier to identify than very
small ones and contribute significantly to the overall litter amount, especially if considering
them as a potential source of MP.

Figure 12. Comparison between area and number of litter items identified through manual mapping
over the total of actual litter (2019).

3.5. Object Identification: Comparisons

Macroplastic identification and classification provided different accuracy levels in recog-
nizing the objects on the basis of available information. The consequence, as shown above,
was to assign a certain CL during the operation of litter description. However, it is particu-
larly interesting to show in which way an item can be recognized or not using the different
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UAV-derived products. Figure 13 shows (i) a picture of detail, (ii) the orthomosaic view, (iii)
the DSM, and (iv) the NDVI. Here, we present a brief example of items that can usually be
found on beaches, showing how they are recognizable using UAV image-based datasets:

Figure 13. Level of identification of different items of macroplastics (plastic bottles, stoppers, piece of
plastic and polystyrene, bags).
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• Item 7—Drink bottle > 0.5 L (class G8): the item is recognizable both on the orthomo-
saic and the DSM and hence easy to identify.

• Item 60—Plastic piece 2.5–50 cm (class G79): the item is quite easy to identify due to
its size, shape, color, and position.

• Item 15—Small plastic bag (class G4): the item is very hard to identify since it is
practically indistinguishable from the background.

• Item 11—Plastic cap/lid unidentified (class G23): the item may be recognized using
the circular shape. However, the possible presence of sand contained in the object can
make detection very hard.

• Item 18—Plastic piece 2.5–50 cm (class G79): the item is close to the lower size of this
class and hence very difficult to identify. Color may help.

• Item 89—Polystyrene piece 2.5–50 cm (class G82): the item is well identifiable on the
orthomosaic due to its bright white color. However, the shape does not differ much
from the background.

Most of the AMD located on the beach presented situations similar to those depicted in
Figure 13.

4. Discussion

This article presents an approach based on UAVs for mapping and classifying the
plastic AMD along a beach. The survey was repeated after one year, using drone technology
to fly over the same transects. AMD over 2.5 cm was collected every time and further
analyzed to create a ground truth dataset. Using UAV images captured at a distance of
10 to 25 m from the ground surface, we generated orthomosaics, DSMs, and NDVI maps
in order to develop a comprehensive AMD map. To better understand the way expertise
might influence accuracy with identification, we used operators with varying levels of
experience in recognizing AMD. Expertise in marine debris research and identification
proved an important difference in determining operator accuracy. operator 1’s relative
inexpertise was supplemented by UAV-acquired photographs, which improved accuracy.

Assigning a level of confidence to the classification of items proved to be a crucial
aspect in monitoring the degree of mapping accuracy. In fact, less confident classifications
were often preferred by mapping operators due to the difficulty in distinguishing AMD
from the background texture and recognizing it properly. Lo et al. [40] demonstrated that
operating conditions also affect the accuracy in litter assessment in a significant way, with an
accuracy ranging from 39% to 75%. The validation of the descriptions of recognized AMD
items proved that the operator’s attribution of higher CLs was actually matched by a proper
identification of AMD. Usually, CL 1 was assigned to items with a well-distinguishable shape.
Moreover, the concordance [44] between operators was maximum for CL 1. Larger items
such as plastic bottles proved easy to identify on the orthomosaic and the DSM. This is
because they cover a large number of pixels, and they also deviate considerably from the
terrain topography. White pieces of plastic (e.g., polystyrene) can be distinguished both
using the orthomosaic and multispectral information (i.e., NDVI). However, recognizing them
on the DSM may be difficult due to their small size and more rounded shape. Stoppers or
bottle caps can be distinguished due to their circular shape, but the actual size results in
the difference for success in recognizing them. Moreover, the visible side of the stopper is
important. In fact, the accumulation of sand accumulated within the stopper can negatively
affect the identification process. Flat objects, such as small pieces of plastics, are difficult to
distinguish; their color may help in recognizing them on the orthomosaic, though such colors
often fade over time and with exposure to the natural elements. Finally, transparent items
(e.g., films, bags) are really hard to identify using all of the information acquired. They are
often flat, transparent, and can also be partially covered by the sand, all of which make them
less distinguishable.

Conversely, recognizing very small items is a very hard task: the spatial resolution
on the ground should be increased, but generally this requires flying lower, limiting the
extent of any flight mission. While microplastics do not contribute significantly to the
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total amount of AMD in terms of weight, they are an important component of the plastic
pollution problem. The value of this approach is based on the mapping and quantification
of larger items, representing a solution for a quick mapping of beach AMD.

Multispectral data in the near-infrared wavelengths allowed operators to exclude
vegetation-related items such as flowers or stems on the dune but did not increase the
amount of AMD recognized in a significant way. On the contrary, looking at the results
obtained by the more expert operator 2 in 2020, Figure 10 highlights a decrease of both
the total count of AMD in each CL class (CL 3: from 29 to 25; CL 2: from 29 to 25; CL 1:
from 16 to 5) and an increase of the uncertainty in classifying the litter (CL 3: from 39%
to 45%; CL 2: from 39% to 46%; CL 1: from 22% to 9%). The spectral response of litter
material has been investigated in controlled laboratory environments [50,51] and leads to
the characterization of the plastic [52,53], but the same response in the field [54] can be
different due to degradation processes that modify material characteristics. The collection
of proximal hyperspectral measurements of in situ plastic debris [55] can represent a
way for developing methods to address this issue. Additionally, on the basis of specific
wavelengths in which the spectral response is higher than the environmental surroundings,
and hence the presence of plastics is characterized by better exploiting this, new spectral
indices can be formulated and investigated compared to the simple NDVI. Similarly,
the use of DSM in the support of mapping operations did not increase the amount of AMD
recognized in a significant way. Although the use of DSMs can allow operators to recognize
item shape, even in a semi-automatic way [56], limitations are also represented by natural
wood debris, algae agglomeration, and similar items that would result in beach surface
anomalies, misleading marine litter detection. Conversely, the use of DSMs allows the
quantification of litter volume [57].

The comparison between the mapping performed using DJI–P4RTK and DJI–P3P
image datasets showed that, in most cases, using the DJI–P3P, the confidence level assigned
to litter items increased. This is quite obviously due to the higher spatial resolution of DJI–
P3P images at a 10 m flight altitude (i.e., GSDDJI−P3P = 4 mm < GSDDJI−P4RTK = 7 mm).
However, the use of an RTK UAV has certainly the notable advantage of speeding up
all the aerial survey operations in the field since there is no need to deploy GCPs and
collect their coordinates with a GNSS receiver. Current app limitations may be resolved
in the future, allowing one to exploit the higher camera resolution of the DJI–P4RTK (i.e.,
camera resolutionDJI−P4RTK = 20 Mpix > camera resolutionDJI−P3P = 12 Mpix).

The precise positioning of the AMD, on the beach or in wider coastal stretches, also
represents important data, especially whenever combined with ground surveys (collected
items) because such information is useful to better understand their transport, distribution,
and accumulation under coastal processes forcing the overall dynamic system [38,58,59].
Moreover, the spatial distribution of AMD mapped using the UAV approach can be further
used to calculate beach litter density or CCI to classify beaches on the basis of cleanliness.
The UAV-based AMD mapping can help in cataloging and better understanding debris
that might exist in hard to access places. Finally, we believe that a UAV-designed list of
litter items, as the one proposed by Andriolo et al. [44], should be refined and assumed as
a standard for UAV-based mapping and monitoring of AMD in the future, both to help
users with poor experience in litter monitoring (as in this work) and to make UAV survey
output uniform.

5. Conclusions

The mapping of AMD from UAVs is strongly influenced by the relationship between
the ground sample distance and the size of litter. In this work, we found that a resolution
of about 200 pix/m is a good solution to map plastic debris. That said, the characteristics
and the position of items on the ground affect the detection of even large and theoretically
easy-to-identify objects. Moreover, the level of experience of the mapping operator is a
further variable that can impact the results of litter identification. The use of multispectral
information can help to distinguish vegetation from AMD but was found to be substantially
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unhelpful in distinguishing AMD from the sandy background. There are inherent trade-
offs in the choices made using this methodology. Focusing on large items can yield accurate
results while flying over wide areas. Focusing on smaller areas at closer range can allow
better quantifying debris of various sizes. Due to the operator’s uncertainty in recognizing
the AMD properly on the orthomosaics, operator training should be required in order to
improve their confidence with UAV-based AMD mapping.

Based on this analysis, we recommend (i) to use RGB cameras with the highest
geometric resolution as possible in order to have smaller ground sample distances, (ii) to
use RTK drones if a centimeter-level accuracy of debris position has to be achieved, and (iii)
not to use operators with no experience in matters of beach litter mapping when using
drone technology to identify anthropogenic marine debris.

Future research should explore the use of hyperspectral sensors [60,61] instead of
multispectral ones in order to exploit ways that some plastics respond to specific wave-
lengths as well as the use of algorithms of object detection, machine learning [11,62–67],
or a deep-feature-based approach [68] coupled with this type of imaging. However, these
tasks can be complicated by the degradation processes which modify the characteristics
of materials, plastics included. The spectral response in situ can be different from what is
obtained in the laboratory.

Author Contributions: Conceptualization, Y.T., C.C. and A.P.; data curation, Y.T., C.C., J.B. and A.P.;
formal analysis, Y.T., C.C. and A.P.; funding acquisition, C.C., U.S. and A.P.; investigation, Y.T., C.C.,
J.B. and A.P.; methodology, Y.T., C.C. and A.P.; project administration, C.C., U.S. and A.P.; resources,
Y.T., C.C., U.S. and A.P.; software, Y.T. and A.P.; supervision, Y.T., C.C., U.S. and A.P.; validation,
Y.T., C.C. and A.P.; visualization, Y.T.; writing—original draft preparation, Y.T.; writing—review
and editing, Y.T., C.C. and A.P.; All authors have read and agreed to the published version of the
manuscript.

Funding: This study was supported by the NET4mPLASTIC project, co-financed by the European
Regional Development Fund within the framework of European cross-border territorial cooperation
Interreg. IT-HR. CUP: F76C19000000007.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank students and technical staff involved in support
of operations in the field.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript;
or in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

AMD Anthropogenic Marine Debris
CCI Clean-Coast Index
CL Confidence Level
DJI–P3P DJI Phantom 3 Professional
DJI–P4RTK DJI Phantom 4 RTK
DSM Digital Surface Model
ETRF European Terrestrial Reference Frame
ETRS European Terrestrial Reference System
GCP Ground Control Point
GIS Geographic Information System
GNSS Global Navigation Satellite System
GSD Ground Sample Distance
MP(s) Microplastic(s)
MS Multispectral
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NDVI Normalized Difference Vegetation Index
NIR Near Infrared
NRTK Network-RTK
Op.1, Op.2 Operator 1, Operator 2
RGB Red Green Blue
RTK Real-Time Kinematic
T.1, T.2, . . . Transect 1, Transect 2, . . .
UAV Unmanned Aerial Vehicle
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