

NET4mPLASTIC PROJECT

WP3 – Act. 3.3 Study and Design of the Integrated Platform's structure associated with early warning system

D 3.3.3

EWS Software Architecture design

March, 2020 - Version 1.2

European Regional Development Fund

Project Acronym	NET4mPLASTIC
Project ID Number	10046722
Project Title	New Technologies for macro and Microplastic Detection
	and Analysis in the Adriatic Basin
Priority Axis	3
Specific objective	3.3
Work Package Number	3
Work Package Title	Preliminary activities and project implementation
Activity Number	3.3
Activity Title	Study and Design of the Integrated Platform's structure
	associated with early warning system
Partner in Charge	PP3
Partners involved	LP, PP1, PP2, PP3, PP4, PP7
Status	Final
Distribution	Public

CONTRIBUTING PARTNERS PP2, PP3, PP4		
	CONTRIBUTING PARTNERS	PP2, PP3, PP4

Data	Vers	Prep	Resp	Appr	Rev	Comment
31.10.2019	1.0	PP2	PP3	Daniele Calore	Draft	Comment
		PP3				and approval
		PP4				
31.12.2019	1.1	PP2	PP3	Daniele Calore	First	Comment
		PP3			Release	and approval
		PP4				
15.03.2020	1.2	PP2	PP3	Daniele Calore	Final	Approved
		PP3				
		PP4				

INDEX

Acrony	Acronyms / Abbreviations4				
1 In	ntroduction	5			
1.1	Background of the project	5			
1.2	Purpose of the report	5			
Refe	erence documentation	6			
2 So	oftware architecture	7			
2.1	Introduction	7			
2.2	Functional Diagram	7			
2.3	Breakdown of Software Modules with Related Functionalities	10			
3 D	ata Centre Software Modules	15			
3.1	Introduction	15			
3.2	Web GIS platform data reporting module	15			
3.3	Web GIS platform visualization module	17			
3.4	Web GIS platform report module	20			
3.5	Database module	20			
3.6	Front-end module	21			
3.7	Smartphone software application for Macroplastic data reporting	22			
4 In	nstrumented Units Software Modules	23			
4.1	Introduction	23			
4.2	Drone Software Modules	23			
4.3	Onboard Units Software Modules	24			
5 Ex	xternal Systems Software Modules	26			
5.1	Introduction	26			
5.2	Meteo System	26			
5.3	Marine System	27			
5.4	River flow System	28			
5.5	Other System	29			
6 Ex	xternal System Interface specification	31			

6.1	Introduction	.31
6.2	MP Transport module interface specification	.31
6.3	Meteo System interface specification	.31
6.4	Marine System interface specification	.31
6.5	River flow System interface specification	.32

Acronyms / Abbreviations

ACRONYM	DEFINITION
EWS	Early Warning System
MP	Microplastic
OBU	On board Unit
РР	Project Plan
PT	Project team
TC	Technical task coordinator
TGS-ML	Technical Subgroup on Marine litter, European Union expert group On marine litter
ТМ	Task Manager
UML	Unified Modelling Language
WP	Workpackage

1 Introduction

1.1 Background of the project

The main goal of the NET4mPLASTIC project is to achieve an efficient monitoring system for plastic and MP distribution along the Croatian and Italian coastal and marine areas in order to improve the environmental coastal and marine sea quality conditions.

According to doc R1, the Act 3.3 deals with the study and design of the EWS - Early Warning System including:

- a control centre, based on system hardware and network (Prosoft), and a EWS application (Hydra Solutions) integrated with the transport model and external systems (such as the oceanographic model (Marche Region);
- Integrated Marine Drone, for collection of MP microplastic, and geolocalized water indicators on the route (Hydra Solutions);
- Integrated Marine OBU, a unit to be installed on board of ships for improved MP collection with geolocalized water indicators on the route (Hydra Solutions).

The design shall be carried out with the modern system engineering approach based on UML - Unified Modelling Language (Hydra Solutions). UNITS and RERA SD will provide data for the first set up of the platform related to MP. Based on this WP, the transport model will be developed in WP4. The development of the EWS platform integrated with the transport model will be done in WP5. The expected deliverable are the following:

- D 3.3.1 EWS Requirements definitions based on the stakeholders and users' needs, through questionnaires and specific meeting
- D 3.3.2 EWS Hardware Architecture and network design (central Data Centre Hardware Architecture Client/Server, Data network architecture and related communication segments)
- D 3.3.3 EWS Software Architecture design (data modelling software, GIS applications, early warning detection software, etc.), the Relational Database to manage all collected data with related meta data, the communication Front-End for web remote access, the Data Centre Software Interfaces for users
- D 3.3.4 EWS Hardware and other software Components Specifications design (Integrated Marine Drone and Marine OBU, with details of required components (hardware and firmware), firmware and other software components (mobile apps for managing the drones and for remote mobile activities).
- D 3.3.5 Report and database provision with all the collected data

1.2 Purpose of the report

This document is the deliverable D.3.3.3 - EWS Software architecture design, based on the EWS requirement definition report [R2], and the deliverable D.3.3.2 - EWS Hardware Architecture and network

design, to describe the software architecute design, within the activity 3.3 of the **Net4mPlastic project** - **New Technologies for Macro and Microplastic Detection and Analysis in the Adriatic Basin.**

The purpose of this document is summarized as follows:

- Description of the software architecture;
- Description of each software module;
- Interface description of external modules.

Reference documentation

No	Title	Rif/Report N.	Pubblished by
[R1]	APPLICATION FORM - NET4mPLASTIC Project - New Technologies for macro and Microplastic Detection and Analysis in the Adriatic Basin	Application ID: 10046722, dated 30/06/2017	Lead applicant: UNIVERSITY OF FERRARA
	2014 - 2020 Interreg V-A Italy - Croatia CBC Programme Call for proposal 2017 Standard - NET4mPLASTIC Priority Axis:Environment and cultural heritage		
[R2]	EWS requirements definition	HYD001-SPE- 001.0	ACT3.3 – Net4Mplastic
[R3]	EWS hardware architecture and network design	HYD002-SPE- 001.0	ACT3.3 – Net4Mplastic

2 Software architecture

2.1 Introduction

This chapter provides an overview of the software architecture expected for the EWS system, based on the system architecture.

2.2 Functional Diagram

Basically, the general architecture of the Software involved in the EWS is depicted in the picture herebelow where the following elements and modules can be identified:

Fig. 2.1 – Software Architecture – Conceptual Deployment Diagram

- Data Centre software modules, to collect, process and store in an organized way and make available to the users all the collected data. It mainly consists of:
 - GIS Data Reporting Module;
 - o GIS Data Visualization Module;
 - GIS Report Module;
 - GIS Database;

- Smartphone App Module Macroplastic Reporting App.
- Front-end software module, that could be both integrated in the Data Centre to acquire, decode and store some kind of data as same as it could be a portable software module, both for laptop or eventually tablet pc to acquire, decode and store/transmit from local source of data as the drone or the OBU;
- External system software modules, to collect all the necessary external source of data needed by the EWS and provide them directly to the Data Centre Database or eventually directly to the Prediction Model. It mainly consists of:
 - Meteo Interface Module;
 - Marine Interface Module;
 - River Flow Interface Module;
 - Others (such as Macroplastic data, etc).
- OBU software module, to acquire and collect all the data from the related sensor, store it on the internal OBU memory and prepare it for the automatic and/or manual transmission to the Data Centre Database;
- Drone software module, to acquire and collect all the data from the related sensor, store it on the internal Drone memory and prepare it for the automatic and/or manual transmission to the Data Centre Database.

The macro-list of software modules with their theoretic location of deployment is described in the table below.

ID	Software Module	Note		
Data C	Data Centre			
DC01	GIS Data Reporting Module			
DC02	GIS Data Visualization Module			
DC03	GIS Report Module			
DC04	GIS Database			
DC05	GIS Front-End			
DC06	Smartphone Macroplastic Reporting Module (Data Centre Side)			
External System				

ES01	Meteo Interface		
ES02	Marine Interface		
ES03	River Flow Interface		
ES04	Others		
Predict	ion Model Environment		
PM01	MP Oceanographic Model		
Portable			
PO01	Front-end for local application/instrumentation		
PO02	Macroplastic Reporting App		
OBU			
OB01	OBU Internal Software Module		
DRONE			
DR01	Drone Internal Software Module		

Tab. 2.1 – Software Architecture – Macro Software Modules

2.3 Breakdown of Software Modules with Related Functionalities

Given the list of software modules with related location as described in the Tab. 2.1, the main functionalities to be implemented are coded and described herebelow:

Data Centre:

Module ID	Software Module Functionality	Note		
DC01 – GIS Data Reporting Module				
DC01-F001	Retrieve desired data stored in the GIS Database and provide in to the user in table-view format			
DC01-F002	Provide to the user selectable query criteria such as date, time, location as same as search by parameters			
DC01-F003	Allow the user to export selected data in most pouplar format such as .xls or .csv			
DC01-F004	Keep track of the most important data of the system to be shown as always-on-display			
DC01-F005	Save for export functionality			
DC01-F006	Alarm configuration and dispatching options	To evaluate to integrate a separate software module		
DC01-F007	User login/logout configuration	For administrator role, to evaluate to integrate a separate software module for administration		
DC02 – GIS D	ata Visualization Module			
DC02-F001	Retrieve desired data stored in the GIS Database and provide in to the user in a map-view format			
DC02-F002	Provide to the user selectable query criteria such as date, time, location as same as search by parameters			
DC02-F003	Allow the user to export selected data in most pouplar format such as .jpg or .png			
DC02-F004	Keep track of the most important data of the system to be shown as always-on-display			

DC02-F005	Allow the user to perform all the typical GIS operation on the map such as zoom, group values by color, group by position, etc.		
DC02-F006	Save for export functionality		
DC02-F006	User login/logout		
DC03 – GIS R	eport Module		
DC03-F001	Allow the user to select data from the GIS Database, both in table-view and map-view format to generate a report (typically in .pdf format)		
DC03-F002	Report template configuration		
DC03-F003	Automatic report generation configuration		
DC03-F004	Report dispatching		
DC03-F005	User login/logout		
DC04 – GIS D	atabase		
DC04-F001	Store received data following Relational Data Base Management System Standards	Directly accessible only to Administrator	
DC04-F002	Provide Easy and Fast data retrieval	Directly accessible only to Administrator	
DC04-F003	Ensure data atomicity	Directly accessible only to Administrator	
DC04-F004	Ensure data consistency	Directly accessible only to Administrator	
DC04-F005	Ensure data isolation	Directly accessible only to Administrator	
DC04-F006	Ensure data durability	Directly accessible only to Administrator	
DC04-F007	Easy commit and roll-back operations	Directly accessible only to Administrator	
DC04-F008	Periodic backup and restore capability	Directly accessible only to Administrator	
DC04-F009	User login/logout	Directly accessible only to Administrator	
DC05 – GIS Front – End			

DC05-F001	Retrieve and parse all the different kind of data received, both manually and automatically, decode and store it in the GIS Database	
DC05-F002	Retrieve data from the GIS Database, to be encapsulated in the required format and transmit/export it when necessary.	
DC05-F003	First data validation	
DC06 – Smarpthone Macroplastic Reporting Module		
DC06-F001	Listen for data to be received from the Smartphone app module	
DC06-F002	Decode received data and store it on the GIS Database	
DC06-F003	Interface with other existent systems	To be evaluated

External System:

Module ID	Software Module Functionality	Note						
ES01 – Mete	o Interface							
ES01-F001	Acquire meteo data such as wind speed, wind direction, pressure, humidity, temperature and solar radiation (could be from sensors, websites, data sources, etc)							
ES01-F002	Encapsulate acquired data in the designed data format, to be acquired (via automatic transmission and/or manually) by DC05 – GIS Front-End software module							
ES01-F003	Discard corrupted or incomplete data (or mark it bad, incomplete, etc)							
ES01-F004 Keep log of the performed operation								
ES02 – Marin	ne Interface							
ES02-F001	Acquire marine data such as significant wave height, direction and period, current profiles in terms of depth, current speed and current direction, water quality data in terms of conductivity, temperature, depth, dissolved oxygen and turbidity (could be from sensors, websites, data sources, etc.)							
ES02-F002	Encapsulate acquired data in the designed data format, to be acquired (via automatic transmission and/or manually) by DC05 – GIS Front-End software module							

ES02-F003	Discard corrupted or incomplete data (or mark it bad, incomplete, etc)										
ES02-F004	Keep log of the performed operation										
ES03 – River	Flow Interface										
ES03-F001	Acquire river flow data (could be from sensors, websites, data sources, etc)										
ES03-F002	Encapsulate acquired data in the designed data format, to be acquired (via automatic transmission and/or manually) by DC05 – GIS Front-End software module										
ES03-F003	Discard corrupted or incomplete data (or mark it bad, incomplete, etc)										
ES03-F004	Keep log of the performed operation										
ES04 - Others	5										
ES04-F001	Acquire other kind of necessary data, such as bathymetry (could be from sensors, websites, data sources, etc)	To be detailed									
ES04-F002	Encapsulate acquired data in the designed data format, to be acquired (via automatic transmission and/or manually) by DC05 – GIS Front-End software module										
ES04-F003	Discard corrupted or incomplete data (or mark it bad, incomplete, etc)										
ES04-F004	Keep log of the performed operation										

Prediction Model Environment: To be detailed by Marche Region

Portable:

Module ID	Software Module Functionality	Note					
PO01 – Front	PO01 – Front-end for local application/instrumentation						
PO01-F001	Manually retrieve and parse all the different kind of data received, such as Drone stored data or OBU stored data and prepare/export it for the DC05-GIS Front-End software module						
PO01-F002	First data validation						
PO02 – Macroplastic Reporting App							
PO02-F001	Take picture and notes of the area of interest						

PO02-F002	Georeference the picture acquired, connect and send the data to DC06 Smarpthone Macroplastic Reporting Module	
PO02-F003	User login/logout to univocally identify the reporter	

OBU:

Module ID	Software Module Functionality	Note				
OB01 – OBU	OB01 – OBU Internal software module					
OB01-F001	Verify sensor integrity and acquire the diagnostic data of the unit					
OB01-F002	Acquire, store and sort the data from the sensor payload of the OBU					
OB01-F003	Validate the integrity of the data					
OB01-F004	Encapsulate data in the designed format and prepare it for the automatic transmission or manual download					

Drone:

Module ID	Software Module Functionality	Note					
DR01 – Dron	DR01 – Drone Internal software module						
DR01-F001	Verify sensor integrity and acquire the diagnostic data of the unit						
DR01-F002	Acquire, store and sort the data from the sensor payload of the Drone						
DR01-F003	Validate the integrity of the data						
DR01-F004	Encapsulate data in the designed format and prepare it for the automatic transmission or manual download						
DR01-F005	Route and mission program configuration						

3 Data Centre Software Modules

3.1 Introduction

This chapter provides an overview of the Data Centre Software Modules functionalities, based on the system architecture.

3.2 Web GIS platform data reporting module

As described in par. 2.3 of this document, Web GIS platform data reporting module shall satisfy and implement the macro functional requirements briefly reported herebelow:

DC01-F001	Retrieve desired data stored in the GIS Database and provide in to the user in table- view format
DC01-F002	Provide to the user selectable query criteria such as date, time, location as same as search by parameters
DC01-F003	Allow the user to export selected data in most pouplar format such as .xls or .csv
DC01-F004	Keep track of the most important data of the system to be shown as always-on-display
DC01-F005	Save for export functionality
DC01-F006	Alarm configuration and dispatching options
DC01-F007	User login/logout configuration

An procedural example of the required functionalities is depicted below, where it is shown an ideal software module that allow the user to select a certain time span, then select on another view a set of parameter to then exectute the query and visualize the output in a table format, allowing the user to eventually export the data in the most common formats:

1. The user shall choose the desired time interval of the data to be analyzed by picking the date and the hour on the date selection fields:

Ele KIcols 01									
Program status				Date interval		Hour			
Timer ON	No alarm	Ceactivate alarm	From:	2016-08-08	8.	0			
			70:	2016-08-10		0	•	Set	
Network C Hessages B- Centre 0	h P	input Database Charts La	nguage setti	ngs Users					

Fig. 3.1 – Date Selection

Network C		⊡ Network C	*
🚊 Messages		Messages	
🚊 Centre 0		🖶 Centre 0	
🖨 Zone 0	=	- Parameters	
E- SR8 1		- Centre 0	
T			=
☐ UTM 2		E-Zone U	
A			
. В			
c		🚊 Zone 1	
D		SRB 3	1.1
😑 Zone 1		VE	
E- SHB 3		IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
		VA	
		TA	
		IC	
0		PC	
E. Zone 2		E UTM 4	
E 588 5		Pressure	
LT		Threshold	
E UTM 6		VE	
- A		TE	
в		VA	
c	-		
10 U 1208	1000	1A	

2. The user shall select on a tree-view or equivalent the parameter(s) to visualize:

Fig. 3.2 – Different example of parameters selection

3 The user shall execute the query and the result shall appear in a table-view format

ogrami status					Date interval		Hour						
Timer ON	· tin simm	(De	estivate slame	Form	2055-08-02	<u>ل</u> ا	0	•					👧 admin
78	10-2010-000	100		To.	2016-08-03	D-	23	+	Sec				8 CW
Nationals C		Input	Cutabace harts	Language Sett	nga Usera		235						
Messages			FreeMemoryPerc	FlagStatus	WDECase	VE			a	VA	14	τç	PC
th Zone B	-		96	1	1	13.3	15		38	0.00	2	31.10	958
ED 598 1			10	1	1	13.4	12		38	0.00	2	30.95	939
Concession of the local division of the			56	1	1	18.4	19		38	0.00	2	30.47	958
A			58	1	1	13.5	45		38	0.00	2	29.90	955
5			56	1	1	15.5	12		37	0.00	2	22:47	953
c			58	1	1	15.3	6		38	0.00	2	29.42	950
D True 1			56	1	1	15.8	2		58	0.00	2	22.64	950
1 ID 588.3			58	2	1	18.7	5		26	24.51	25	28.82	1019
1.Y			98	1	1	15.5	k0		96	0.00	2	50.11	951
E UTM 4			98	2	1	15.5	0		97	0.00	2	29.99	950
A			98	1	1	15.5	12		96	0.00	2	29.79	951
			58	1	1	13.2	19		82	0.00	2	29.59	950
D			56	1	1	13.2	5		83	0.00	2	29.57	9-19
E-Zone 2			56	1	1	15.2	55		83	0.00	2	29.55	949
⊕ SR8 5			at	\$	1	15.2	15		R2	0.00	2	29.57	949
L L		1	00	4	10	12.0	M.		89	0.00		70.01	950

Fig 3.3 – Example of Table-view mode

3.3 Web GIS platform visualization module

As described in par. 2.3 of this document, Web GIS platform visualization module shall satisfy and implement the macro functional requirements briefly reported herebelow:

DC02-F001	Retrieve desired data stored in the GIS Database and provide in to the user in a map- view format
DC02-F002	Provide to the user selectable query criteria such as date, time, location as same as search by parameters
DC02-F003	Allow the user to export selected data in most pouplar format such as .jpg or .png
DC02-F004	Keep track of the most important data of the system to be shown as always-on-display
DC02-F005	Allow the user to perform all the typical GIS operation on the map such as zoom, group values by color, group by position, etc.
DC02-F006	Save for export functionality
DC02-F006	User login/logout

The steps required to achieve the required functionalities shall be similar to the ones described in the previous paragraph. The output in this case consist of a map (cartography) showing/plotting a series of data. By using the last state of the art technology, this software module will be implemented by the

integration of tools such as Google Earth[®] and Google Maps[®] API, as they can easily provide benefits such as:

- 1. Online cartography: the cartography is stored on external Google server and it is periodically updated by Google, without the needing of download unnecessary amount of data and/ore waste local storage to store it;
- 2. GIS functionalities integrated: it allows the user to easily integrate common GIS functionalities such as concentration views, rasterized views based on data concentration, etc;
- 3. Computational power: it is not required as all the elaboration to be done on the cartography are on charge of Google server side. The interaction is depicted in the schema below.
- 4. Cost effective.

The interaction schema to integrate Google API is depicted herebelow:

Fig 3.4 – Example of Interaction

The first three layers starting from above consist of integrating the API locally and prepare the queries by fetching data from local GIS Database and encapsulate it in the API required format, to then pass it to

Google Serves (last two layers) that will provide the interactive map and information after the data computation.

Some typical output examples are illustrated in the following pictures:

Fig 3.5 – Example of Raster View (2D and 3D) Bathymetry data

Fig 3.6 – Example of Raster View Pollution Concentration

Fig. 3.7 – Raster Concept, where at every pixel is associated a color based on the range of desired data

3.4 Web GIS platform report module

As described in par. 2.3 of this document, Web GIS platform report module shall satisfy and implement the macro functional requirements briefly reported herebelow:

DC03-F001	Allow the user to select data from the GIS Database, both in table-view and map-view
	format to generate a report (typically in .pdf format)
DC03-F002	Report template configuration
DC03-F003	Automatic report generation configuration
DC03-F004	Report dispatching
DC03-F005	User login/logout

The steps needed to achieve the functionalities consist of creating a reporting selection criteria screen where the user can configure the desired data to be reported, both in manual way or in an automatic – periodic way. The report can be eventually automatically dispatched.

3.5 Database module

As described in par. 2.3 of this document, Database module shall satisfy and implement the macro functional requirements briefly reported herebelow:

DC04-F001	Store received data following Relational Data Base Management System Standards
DC04-F002	Provide Easy and Fast data retrieval

DC04-F003	Ensure data atomicity
DC04-F004	Ensure data consistency
DC04-F005	Ensure data isolation
DC04-F006	Ensure data durability
DC04-F007	Easy commit and roll-back operations
DC04-F008	Periodic backup and restore capability
DC04-F009	User login/logout

Those functionalities are achieved by integrating the well-known Relational Database Management System. Detailed information is provided within the related document D.3.3.5 Net4mPlastic project - EWS report and database provision.

3.6 Front-end module

As described in par. 2.3 of this document, Front-end module shall satisfy and implement the macro functional requirements briefly reported herebelow:

DC05-F001	Retrieve and parse all the different kind of data received, both manually and automatically, decode and store it in the GIS Database
DC05-F002	Retrieve data from the GIS Database, to be encapsulated in the required format and transmit/export it when necessary.
DC05-F003	First data validation

Fron-end software module shall be the agent responsible of acquire and parse all the data coming from the external environment and converging to the main GIS Database. At the actual state the role of the front-end is:

- Acquire data (automatically or manually provided) from the Drone;
- Acquire data (automatically or manually provided) from the OBU;
- Acquire data (automatically or manually provided) from the External Interfaces;
- Acquire data (automatically or manually provided) by the Oceanographic Module.

This is achieved by:

- Coding all the data formats;
- Integrating the data formats parsing schema in the front-end;
- Periodically poll for new data received in a particular folder, scan, parse and decode it by then preparing the SQL instruction to populate the GIS Database table with the information.

An event log of all the information passing thru the front-end software shall be kept and ready for the technicians to be visualized. Herebelow is depicted an example of Front-end side Error Log.

in status				Date interval	Hour			
Timer ON 🕘 No alarm	De	eactivate alarm	From:	2016-08-10	0	•		🔕 adr
	-		To:	2016-08-10	0	•	Set	
twork C	Input	Database Charts	Language Settin	ngs Users				
E- Centre 0		ID	DataIns	RawErr	ode			
🖨 Zone 0 🗉		4	8/10/2016 6:08	{Z10f0008[S04jj 4				
E-SRB 1		2	8/10/2016 6:08	{C107kG0l[Kg86 1	2			
UTM 2		3	8/10/2016 6:08	(C10lwD0J[WQ 1	2			
		4	8/10/2016 6:08	{Z10h0008[S06jj 4				
В		5	8/10/2016 6:08	{C109ak0l[Kg86 1	2			
c		6	8/10/2016 6:08	{Z10bc108[S00jj 4				
D		7	8/10/2016 6:08	{hggyugyugyu 4				
B- SRB 3		8	8/10/2016 6:08	{C309fg0l[Kg86 1	2			
L.T.		9	8/10/2016 6:08	{C309mK0l[Kg8 1	2			
ia-UTM 4		10	8/10/2016 6:08	(Z10hAU08[S00 4				
- A		11	8/10/2016 6:08	{Z10hJu08[S00jj 4				
c		12	8/10/2016 6:08	{1234567890123 4				
D		13	8/10/2016 6:08	{C107dX0l[Kg87 1	2			
Sone 2		14	8/10/2016 6:08	(C307ib0l[Kg87 1	2			
⊡-SRB 5		15	8/10/2016 6:08	{C107le0l[Kg87 1				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		16	8/10/2016 6:08	{C2082K0M[Djg 5				

Fig. 3.8 – Error Log

3.7 Smartphone software application for Macroplastic data reporting

As described in par. 2.3 of this document, Smartphone software application for microplastic data reporting module shall satisfy and implement the macro functional requirements briefly reported herebelow:

DC06-F001	Listen for data to be received from the Smartphone app module
DC06-F002	Decode received data and store it on the GIS Database
DC06-F003	Interface with other existent systems

This software module can run as service and consist of a listener for microplastic data reporting app. Its scope is self-explanatory by the functionalities required.

4 Instrumented Units Software Modules

4.1 Introduction

This chapter provides an overview of the Instrumented Units Software Modules functionalities, based on the system architecture.

4.2 Drone Software Modules

As described in par. 2.3 of this document, Drone software module shall satisfy and implement the macro functional requirements briefly reported herebelow:

DR01-F001	Verify sensor integrity and acquire the diagnostic data of the unit
DR01-F002	Acquire, store and sort the data from the sensor payload of the Drone
DR01-F003	Validate the integrity of the data
DR01-F004	Encapsulate data in the designed format and prepare it for the automatic transmission or manual download
DR01-F005	Route and mission program configuration

The Drone Software Module shall produce the acquired data in the following meta-data string format:

{SoM[TIMESTAMP<Date,Time>,POSITION<Latitude,Longitude>,DIAGNOSTI C<V,A,T>,CTDPROBE<C,T,D,DO,Tu>,ADCP<Speed_01,Direction_01:Speed_5 0,Direction_50>,MPSENSORBINARY<ProprietaryData>,CRC]EoM}

Meta Value	Sub Value	Description		
SoM	Start Of Message (including an identifier	– Drone)		
TIMESTAMP	Date	Current date of sampling		
	Time	Current time of sampling		
POSITION	Latitude	Aquired GPS Latitude		
	Longitude	Acquired GPS Longitude		
DIAGNOSTIC	V	Internal battery voltage		
	А	Current sink		
	Т	Internal electronic housing temperature		

CTDPROBE	С	Acquired Conductivity from CTD Probe
	Т	Acquired Temperature from CTD Probe
	D	Acquired Pressure from CTD Probe
	DO	Acquired Dissolved Oxygen from CTD Probe
	То	Acquired Turbidity from CTD Probe
ADCP	Speed_01 : 50	Acquired Sea Current Speed, 50 values, one each cell of depth
	Direction_01 : 50	Acquired Sea Current Direction, 50 values, one each cell of depth
MPSENSORBINARY	ProprietaryData	Binary File acquired from the innovative microplastic sensor, to be post- processed in the Data Centre
CRC	Cyclic Redundancy Check	
EoM	End of Message	

4.3 Onboard Units Software Modules

As described in par. 2.3 of this document, OBU software module shall satisfy and implement the macro functional requirements briefly reported herebelow:

OB01-F001	Verify sensor integrity and acquire the diagnostic data of the unit
OB01-F002	Acquire, store and sort the data from the sensor payload of the OBU
OB01-F003	Validate the integrity of the data
OB01-F004	Encapsulate data in the designed format and prepare it for the automatic transmission or manual download

The OBU Software Module shall produce the acquired data in the following meta-data string format:

{SoM[TIMESTAMP<Date,Time>,POSITION<Latitude,Longitude>,DIAGNOSTI C<V,A,T>,CTDPROBE<C,T,D,DO,Tu>,ADCP<Speed_01,Direction_01:Speed_5 0,Direction_50>,MPSENSORBINARY<ProprietaryData>,CRC]EoM}

Meta Value	Sub Value	Description
SoM	Start Of Message (Including an identifier	- OBU)

TIMESTAMP	Date	Current date of sampling		
	Time	Current time of sampling		
POSITION	Latitude	Aquired GPS Latitude		
	Longitude	Acquired GPS Longitude		
DIAGNOSTIC	V	Internal battery voltage		
	А	Current sink		
	Т	Internal electronic housing temperature		
CTDPROBE	С	Acquired Conductivity from CTD Probe		
	т	Acquired Temperature from CTD Probe		
	D	Acquired Pressure from CTD Probe		
	DO	Acquired Dissolved Oxygen from CTD Probe		
	То	Acquired Turbidity from CTD Probe		
ADCP	Speed_01 : 50	Acquired Sea Current Speed, 50 values, one each cell of depth		
	Direction_01 : 50	Acquired Sea Current Direction, 50 values, one each cell of depth		
MPSENSORBINARY	ProprietaryData	Binary File acquired from the innovative microplastic sensor, to be post- processed in the Data Centre		
CRC	Cyclic Redundancy Check			
EoM	End of Message			

5 External Systems Software Modules

5.1 Introduction

This chapter provides an overview of the External System Software Modules functionalities, based on the system architecture.

5.2 Meteo System

As described in par. 2.3 of this document, Meteo system software module shall satisfy and implement the macro functional requirements briefly reported herebelow:

ES01-F001	Acquire meteo data such as wind speed, wind direction, pressure, humidity, temperature and solar radiation (Mainly from Marche Region Model, could be from sensors, websites, data sources, etc if available)
ES01-F002	Encapsulate acquired data in the designed data format, to be acquired (via automatic transmission and/or manually) by DC05 – GIS Front-End software module
ES01-F003	Discard corrupted or incomplete data (or mark it bad, incomplete, etc)
ES01-F004	Keep log of the performed operation

The Meteo System Software Module shall produce the acquired data in the following meta-data string format:

{SoM[TIMESTAMP<Date,Time>,POSITION<Latitude,Longitude>,METEO<Ws ,Wd,P,H,T,Sr>,CRC]EoM}

Meta Value	Sub Value	Description	
SoM	Start Of Message (Including an identifier – Meteo System)		
TIMESTAMP	Date	Current date of sampling Current time of sampling	
	Time		
POSITION	Latitude	Aquired GPS Latitude	
	Longitude	Acquired GPS Longitude	
METEO	Ws	Acquired Wind Speed	
	Wd	Acquired Wind Direction	
	Р	Acquired Pressure	

	н	Acquired Humidity	
	Т	Acquired Temperature	
	Sr	Acquired Solar Radiation	
CRC	Cyclic Redundancy Check		
EoM	End of Message		

5.3 Marine System

As described in par. 2.3 of this document, Marine software module shall satisfy and implement the macro functional requirements briefly reported herebelow:

ES02-F001	Acquire marine data such as significant wave height, direction and period, current			
	profiles in terms of depth, current speed and current direction, water quality data in			
	terms of conductivity, temperature, depth, dissolved oxygen and turbidity (Mainly from			
	Marche Region Model, could be from sensors, websites, data sources, etc. if available)			
ES02-F002	Encapsulate acquired data in the designed data format, to be acquired (via automatic			
	transmission and/or manually) by DC05 – GIS Front-End software module			
ES02-F003	Discard corrupted or incomplete data (or mark it bad, incomplete, etc)			
ES02-F004	Keep log of the performed operation			

The Marine System Software Module shall produce the acquired data in the following meta-data string format:

{SoM[TIMESTAMP<Date,Time>,POSITION<Latitude,Longitude>,WAVE<Ws h,Wd,Wp>,CTDPROBE<C,T,D,DO,Tu>,ADCP<Speed,Direction>, CRC]EoM}

Meta Value	Sub Value	Description		
SoM	Start Of Message (Including an identifier – Marine System)			
TIMESTAMP	Date	Current date of sampling		
	Time	Current time of sampling		
POSITION (if	Latitude	Aquired GPS Latitude		
available, eventually one for each instrument)	Longitude	Acquired GPS Longitude		
WAVE (if available)	Wsh	Acquired Significant Wave Height		

	Wd	Acquired Wave Direction		
	Wp	Acquired Wave Period		
CTDPROBE (if available)	С	Acquired Conductivity from CTD Probe		
	Т	Acquired Temperature from CTD Probe		
	D	Acquired Pressure from CTD Probe		
	DO	Acquired Dissolved Oxygen from CTE Probe		
	То	Acquired Turbidity from CTD Probe		
ADCP (if available,	Speed	Acquired Sea Current Cell Speed		
number of cells can vary)	Direction	Acquired Sea Current Cell Direction		
CRC	Cyclic Redundancy Check			
EoM	End of Message			

5.4 River flow System

As described in par. 2.3 of this document, River flow software module shall satisfy and implement the macro functional requirements briefly reported herebelow:

ES03-F001	Acquire river flow data (Mainly from Marche Region Model, but could be from sensors, websites, data sources, etc. if available)
ES03-F002	Encapsulate acquired data in the designed data format, to be acquired (via automatic transmission and/or manually) by DC05 – GIS Front-End software module
ES03-F003	Discard corrupted or incomplete data (or mark it bad, incomplete, etc)
ES03-F004	Keep log of the performed operation

The River Flow System Software Module shall produce the acquired data in the following meta-data string format:

{SoM[TIMESTAMP<Date,Time>,POSITION<Latitude,Longitude>,FLOW<f>, CRC]EoM}

Where:

Meta Value	Sub Value Description			
SoM	Start Of Message (Including an identifier – Marine System)			
TIMESTAMP	Date	Current date of sampling		
	Time	Current time of sampling		
POSITION (if	Latitude	Aquired GPS Latitude		
available, eventually one for each instrument)	Longitude	Acquired GPS Longitude		
FLOW	F	Acquired River Flow		
CRC	Cyclic Redundancy Check			
EoM	End of Message			

5.5 Other System

As described in par. 2.3 of this document a general "Other Sensor" software module shall satisfy and implement the macro functional requirements briefly reported herebelow:

ES04-F001	Acquire other kind of necessary data, such as bathymetry (could be from sensors, websites, data sources, etc)
ES04-F002	Encapsulate acquired data in the designed data format, to be acquired (via automatic transmission and/or manually) by DC05 – GIS Front-End software module
ES04-F003	Discard corrupted or incomplete data (or mark it bad, incomplete, etc)
ES04-F004	Keep log of the performed operation

The following meta-data string format represent a possible encapsulation of bathymetry data:

{SoM[TIMESTAMP<Date,Time>,BATHYMETRY<XYZ>, CRC]EoM}

Meta Value	Sub Value	Description	
SoM	Start Of Message (Including an identifier – Marine System)		
TIMESTAMP	Date Current date of sampling		
	Time	Current time of sampling	

BATHYMETRY	XYZ	Encapsulated	typical	XYZ	ASCII
		bathymetry for	mat		
CRC	Cyclic Redundancy Check				
EoM	End of Message				

6 External System Interface specification

6.1 Introduction

This chapter provides an overview on the interface specification, based on the system architecture.

6.2 MP Transport module interface specification

MP Transport software module shall recover the necessary data from the website where all the information retrieved by the phone app will be sent and stored on. MP Transport software module interface shall be handled in the following way:

- MP Portable application shall forward retrieved data to a dedicated website and/or to the main Server DBMS;
- GIS Front-End software module shall acquire the data from the dedicated website if not directly stored in the Server DBMS;
- Information shall be displayed on the GIS Data Visualization Module.

6.3 Meteo System interface specification

Meteo System software module shall recover the necessary data from the Marche Region Model and it shall be handled in the following way:

- Marche Region Model will periodically produce a set of decimated Meteo data to be made available thru datafile and/or its proprietary DBMS, by using an interchange dedicated table to be shared with Meteo System software module;
- Meteo System software module shall periodically acquire the data and produce the standardized output format described in Chapter 5, to be acquired by GIS Front-end software module that will store the decoded data in the Data Centre DBMS.

6.4 Marine System interface specification

Marine System software module shall recover the necessary data from the Marche Region Model and it shall be handled in the following way:

- Marche Region Model will periodically produce a set of decimated Marine data to be made available thru datafile and/or its proprietary DBMS, by using an interchange dedicated table to be shared with Marine System software module;
- Marine System software module shall periodically acquire the data and produce the standardized output format described in Chapter 5, to be acquired by GIS Front-end software module that will store the decoded data in the Data Centre DBMS.

6.5 River flow System interface specification

River flow System software module shall recover the necessary data from the Marche Region Model and it shall be handled in the following way:

- Marche Region Model will periodically produce a set of decimated River flow data to be made available thru datafile and/or its proprietary DBMS, by using an interchange dedicated table to be shared with River flow System software module;
- River flow System software module shall periodically acquire the data and produce the standardized output format described in Chapter 5, to be acquired by GIS Front-end software module that will store the decoded data in the Data Centre DBMS.