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PART A: Risk Evaluation for combined flood seismic hazards for strategic 
structures with water lifting plants: the use of a Machine Learning 
algorithm  

PART B:  Indexes of exposure combined flood seismic risk exposure for IT 
pilot site: the use of the Multi Criteria Decision Making method 
PROMETHEE 
 

 

 

The present deliverable gathers the results obtained by applying two different advanced multirisk 

methodologies for the evaluation of combined risks of hydraulic and seismic type. The two 

methodologies are described hereafter in part A and part B, respectively. We have decided to 

report here both the risk analysis and the indexes obtained as they are closely related. Any 

multirisk methodology cannot deal with local data but requires regional data or at least data 

relating to a sufficiently vast area to be able to define risk indexes. Therefore, the structural scale 

was not considered, and the regional scale was instead taken into account.  
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A. Premise on the use of AI methods for multirisk assessment 
Social vulnerability is deeply affected by the increase in hazardous events such as earthquakes and 
floods. Such hazards have the potential to greatly affect communities, including in developed 
countries. Governments and stakeholders must adopt suitable risk reduction strategies. This study 
is aimed at proposing a qualitative multi-hazard risk analysis methodology in the case of combined 
seismic and flood risk using PROMETHEE, a Multiple-Criteria Decision Analysis technique. The 
present case study is a multi-hazard risk assessment of the Ferrara province (Italy). The proposed 
approach is an original and flexible methodology to qualitatively prioritize urban centers affected 
by multi-hazard risks at the regional scale. It delivers a useful tool to stakeholders involved in the 
processes of hazard management and disaster mitigation. 

Furthermore, this study is aimed at proposing a sound qualitative multi-hazard risk analysis 
methodology for the assessment of combined seismic and hydraulic risk at the regional scale, 
which can assist governments and stakeholders in decision making and prioritization of 
interventions. The method is based on the use of machine learning techniques to aggregate large 
datasets made of many variables different in nature each of which carries information related to 
specific risk components and clusterize observations. The framework is applied to the case study 
of the Emilia Romagna region, for which the different municipalities are grouped into four 
homogeneous clusters ranked in terms of relative levels of combined risk. The proposed approach 
proves to be robust and delivers a very useful tool for hazard management and disaster mitigation, 
particularly for multi-hazard modelling at the regional scale. 

A.1. Introduction 
The frequency of natural extreme events is increasing worldwide [1–9], and human activities often 
interact with devastating effects, affecting people and natural environments, and producing great 
economic losses, especially in developing countries. On the other hand, in some developed 
countries, disasters have been decreasing since the beginning of the 20th century [3,4]. 
Understanding risk involving vast inhabited areas is, therefore, paramount, particularly when 
assessing potential losses produced by a combination of multiple hazards, which are defined as 
the probability of occurrence in a specified period of a potentially damaging event of a given 
magnitude on a given area [5]. In fact, total risk is a measure of the expected human (casualties 
and injuries) and economic (damage to property and activity disruption) losses due to a particular 
adverse natural phenomenon. Such a measure is conceptually assumed as the product of hazard, 
vulnerability, and exposure instances [6]. Exposure of people to the consequences of extreme 
natural phenomena could be reduced if predictive models based on new approaches and deeper 
knowledge of effective factors were employed [7]. 

Many areas on Earth are subjected to the effects of coexisting multiple hazards, among which 
floods and earthquakes are some of the most widespread [8,9] and even if it is well established 
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that inhabited environments are affected by multiple hazardous processes, most studies focus on 
a single hazard [10]. However, hazards usually interact with each other and contribute to the 
overall risk in a complex way. For this reason, the development of multi-hazard risk assessment 
approaches is of first importance [11] and multi-hazard mapping is receiving increasing attention 
[12,13]. In particular, Schmidt et al. proposed a multi-hazard risk assessment methodology in New 
Zealand, devising an adaptable computational tool allowing its users to input the natural 
phenomena of interest [11]. Still, relatively scarce are the studies exploiting machine learning 
techniques to assess multi-hazard risks [14–16], albeit machine learning is especially useful when 
dealing with the huge amount of data encountered in risk analysis, particularly at the regional 
scale.  

In this study, machine learning is used to construct a risk assessment framework in which the 
combined effects of two major natural events (flood and earthquakes) are analyzed for the Emilia 
Romagna test region (Italy). A large input dataset containing, for each municipality of the test 
region, a wide number of quantitative variables related to hazard, exposure, and vulnerability 
instances for both flood and earthquake hazards is adopted. Then, the number of variables is 
suitably reduced by means of Principal Component Analysis (PCA) [17–19], and the municipalities 
are subsequently grouped into four approximately risk-wise homogeneous clusters using a K-
means clustering algorithm [20,21]. Finally, a qualitative overall risk level is assigned to each 
cluster. The proposed methodology represents a robust tool for the qualitative multi-hazard risk 
assessment at the regional scale, which enables suitable extraction of risk-related information 
from a large input dataset and provides a useful instrument that assists stakeholders in decision-
making processes, especially with respect to intervention prioritization.  

A.2. Materials and Methods 
The proposed multi-hazard risk assessment approach is based on the analysis of available data 
using logical, mathematical, and statistical tools. It was applied to the Emilia Romagna region, 
which is located in the Northern part of Italy. Our analysis focused on seismic and hydraulic risks 
associated with this territory. A map of the seismic classification of municipalities in Emilia is shown 
in Figure 1. A hot-spot of hydraulic risk in Emilia Romagna, Ferrara possesses an altimetry below 
the sea level over a large part of its territory, as illustrated in Figure 2.  

To evaluate the overall combined risk for the different municipalities in the test region, several 
intermediate steps were necessary. At first, the reliability of the method was tested on a smaller 
data sample given by the municipalities in the Province of Ferrara (Italy), then on a slightly larger 
one, considering municipalities from other provinces in the test region, and then, finally, 
expanding the data sample to each municipality of the Emilia Romagna region. This type of 
approach improved control on both the algorithm and its calibration, as well as the initial dataset, 
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leading to a significant reduction in terms of computational time. In what follows, we omit the 
description of the intermediate steps and directly present the analysis for the whole test region. 

2.1. Dataset 
Choosing the correct amount of data is paramount. The data employed for our analysis have been 
obtained from the Italian National Institute of Statistics (ISTAT) database, which was used in 2018 
by the Italian Superior Institute for Environmental Protection and Research (ISPRA) to produce 
seismic, hydrogeological, volcanic, and social vulnerability hazard maps for the entire Italian 
peninsula as shown in the report by Trigila et al. [22]. These maps constitute a fundamental tool 
of support to national risk mitigation policies, allowing the identification of intervention priorities, 
the allocation of funds, and the planning of soil protection interventions. 

The input dataset was organized as a matrix in which the rows corresponded to each of the 331 
municipalities of the Emilia-Romagna region and the columns corresponded to quantitative 
variables associated with different aspects of seismic and flood risk. Hence, we had 331 rows or 
observations and hundreds of columns or variables. For instance, we adopted as variables the 
number of buildings sharing certain features (such as building material, the period of construction, 
or the state of conservation), superficial extension, number of inhabitants, population density, 
seismic peak ground acceleration, etc. Overall, all the variables can be grouped into three macro-
categories: variables related to vulnerability instances, variables related to exposure instances, 
and variables related to hazard instances for both seismic and hydraulic risks.  

Since hydraulic risk, as a combination of hydraulic vulnerability, exposure, and hazard, has 
previously been evaluated for each observation by the Italian National Institute of Geophysics and 
Vulcanology (INGV), it was represented in the proposed analysis as a unique variable, which 
condensed all the variables related to hydraulic risk. 

The relative importance between some variables and the relation among them is quantified by 
means of the PCA method, which will be described in the next subsections. 

For instance, some of the crucial variables were identified as follows: 

‐ agMAX_50: maximum value of the peak ground acceleration about the grid data point;  

‐ DENSPOP: Population density (n. of inhabitants/kmq); 

‐ E1-E31: Type of Buildings (e.g., residential, masonry, and state of conservation); 

‐ IDR_AreaP1/P2/P3: Hydraulic risk surface, respectively, low/medium/high; 

‐ IDR_PopP1/P2/P3: Population living in, respectively, low/medium/high hydraulic risk 
surface.  
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An extensive table reporting the explanations of all acronyms associated with the relevant 
variables is reported in Appendix A.  

 

Figure 1. Seismic classification of municipalities in Emilia (https://ambiente.regione.emilia-
romagna.it/en/geologia/seismic-risk/seismic-classification, accessed 15/10/2021). 

 

Figure 2. Ferrara territory altimetry (The map can be downloaded from 
https://www.bonificaferrara.it and has been released from “Consorzio di Bonifica Pianura di 
Ferrara”; accessed 15/10/2021). 

https://www.bonificaferrara.it/
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A.2.2. Initial Exploratory Analysis 
Exploratory analysis is a typical analytical approach in statistics that is suitable for defining and 
synthesizing the main characteristics of a group of data. This type of approach enables 
preliminarily evaluating, searching, and finally, analyzing possible notable patterns within the data, 
in a phase where possible interactions among variables are not known yet. Again, graphics 
techniques for data visualization are quite useful in this step, producing diagrams such as box 
plots, scatter plots, histograms, etc. More analytical techniques, such as PCA, are very useful. The 
whole proposed analysis has been implemented and performed in a MATLAB computing 
environment [23]. 

A.2.2.1. Standardization 
The first step of the exploratory analysis is data standardization. As usual [15,16], the metric of 
standard deviation was adopted to test the machine learning model’s accuracy and to measure 
confidence in the obtained statistical conclusions. This allows us to compare variable data with 
different units of measure, scaling all the variables such that each scaled variable will have mean 
value equal to 0 and standard deviation equal to 1, referred to the data distribution for each 

variable. To attain this outcome, for each variable x  of the dataset, mean 


 and the standard 

deviation   have been calculated. Then the z-score formula has been applied: 

.
x

z







 
(1) 

A.2.2.2. PCA 
Once the entire dataset was standardized, PCA was applied. One of the main targets of PCA is to 
reduce the dimensionality of the initial dataset without losing the amount of information 
belonging to it. A dimensionality reduction technique is a process that takes advantage of linear 
algebraic operations to convert an n-dimensional dataset to an n-k dimensional one. Clearly, this 
transformation comes at the cost of a certain loss of information, but it also gives the benefit of 
being able to graphically visualize the data, while keeping good accuracy. 

The idea behind PCA is to find the best subspace, which explicates the highest possible variance 
in the dataset. Using linear transformations, starting from an initial standardized matrix in the n-
dimensional space, changes in variables are carried out that makes possible to identify 
observations in the space generated from the principal components, which have the particularity 
to catch the maximum possible variance of the initial dataset, thus reducing the loss of 
information.  

Given p random standardized variables 1 2, ,..., pX X X% % %
, collected into the matrix X%, the analysis 

allows determining k p  variables 1 2, ,..., kY Y Y , each of them a linear combination of the p starting 

https://deepai.org/machine-learning-glossary-and-terms/machine-learning
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variables, having maximum variance. To find iY , also known as the i-th principal component, we 

need to find the vector iV  such that 

i iY XV %
  

(2) 

by maximizing the variance relative to the first principal component. In other words, vectors iV  

are the eigenvectors of the covariance matrix C  of X%, i.e., the 
n p

 matrix whose generic 

element hkC  is equal to 
( , )h kCOV X X% %

.  

The j-th element of iY  represents the score of the i-th principal component for j-th statistical unit. 

The j-th element of iV  represents the weight that the j-th variable jX%
 has in the definition of the 

i-th principal component. Vectors iV can be collected as columns in the matrix of weights V . 

Lastly, axis rotations are applied, which mean a change of position of the dimensions obtained 
during the factor’s extraction phase, keeping the initial variance fixed as much as possible. The axis 
can be rigidly rotated (orthogonal rotation) or interrelated (oblique rotation). The result is a new 
matrix of rotated factors. 

Once the dimension of the dataset has been reduced, it is possible to plot the observations in the 
new space generated by the principal components, space where the coordinates of the 
observations have undergone linear transformation, in accordance with the variables as 
mentioned before.  

The scatter plot represented in Figure 3, depicts the observations after variable reduction. One 
can notice the presence of elements defined as outliers, i.e., abnormal values, far from the average 
observations. These disturbing elements could generate unbalanced compensations inside the 
analytical model, and that is why they will be handled with care, modifying the algorithm’s settings 
whenever possible or, in extreme cases, removed from the dataset. In this case, the outliers were 
almost all the administrative centers of Emilia-Romagna region, far away, in terms of the 
quantitative variables, from the rest of the observations. 

It is a good rule to consider the principal components that catch at least 80% of the variance of 
the starting dataset. The more the considered variables, the higher the number of principal 
components necessary to reach that quote. Whenever the amount of variance reached is not 
sufficient, an additional reduction in variables is performed by iterating the process. 
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Figure 3. Observations scatter plot which depicts the observations after variable reduction. 

One of PCA’s main purposes is to delete the noise due to non-useful data, which is evaluated in 
terms of how much information and how much variance they carry inside the dataset. Figure 4 
represents variance for each principal component before variable reduction. Loading plots have 
been generated as histograms representing the weight of the variables transformed after the PCA 
and are reported in Figures 5 and 6. The variables reported along the abscissa have been selected 
among all the available data for being the most meaningful as per the multi-risk evaluation. For 
instance, AGMAX_50 denotes the maximum ground acceleration (fiftieth percentile) calculated on 
a grid with a 0.02° step, with the maximum and minimum of the values of the grid points falling 
within the municipal area. IDR_POPP3 indicates the resident population at risk in areas with high 
hydraulic hazard (P3). From Figures 5 and 6, the variables with the highest coefficients have been 
extrapolated, the higher the coefficient of the variable, the higher the weight of the variable on 
the principal component. Along the first principal component, the difference between 
observations will be led by the different values referred to the variables with highest coefficient in 
the histogram depicted in Figure 5.  



 
 

 
                                 
 
 
 
 

 

 
 

 
 
 
  

 
 

   

11 

 

Figure 4. Variance for each principal component before variable reduction. 

We chose to assess the weight of the coefficient of the variables referring to the first two principal 
components only, because they explicated more than 70% of the variance and are the most 
significant of the combined risk assessment. Figure 7 depicts the variance explicated by the first 
10 principal components after the PCA.  

Fundamental to the visualization of both observations and the relation between the variables is 
the biplot in Figure 8.  

This plot allows catching at an early stage any pattern within the dataset, such as the separation 
between observations and deep relation among variables. In general: 

the projection of the values on each principal component shows how much weight those values 
have on that principal component; 

when two vectors are close, in terms of angle, the two represented variables have a positive 
correlation; 

if two vectors create a 90 angle, the respective variables are not correlated; 

when they diverge and create an angle of almost 180, they are negatively correlated. 
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Outliers differ from the other observations in terms of vulnerability and the population at hydraulic 
risk. It is reasonable because, remembering the outliers are the provincial administrative centers, 
they present higher values in terms of population and built environment. Moreover, along the 
vertical axis the observations differ in terms of seismic hazard and exposition. 

 

Figure 5. Loading plot of the variable coefficients along the first principal component (see Appendix 
A for an explanation of the acronyms). 
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Figure 6. Loading plot of the variable coefficients along the second principal component (see 
Appendix A for an explanation of the acronyms). 
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Figure 7. Variance of the first 10 principal components after variable reduction. 
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Figure 8. Biplot along the first two principal components. 

Moreover, vulnerability and exposure to hydraulic risk variables are quite correlated and 
differentiate the observations along the horizontal axis, whereas seismic hazard and exposition 
variables are not correlated with the variables representing surfaces at hydraulic risk. These 
remarks will come in handy later, at a post-clustering stage, a level of multi-risk will be attributed 
to each cluster. 

A.2.3. K-Means Clustering Algorithm 
The PCA allowed us to reduce the dimensionality of the dataset and plot the observations, i.e., the 
municipalities of the Emilia Romagna region, in the new sub-space identified by the principal 
components, while retaining the majority of information, which identified the observations in the 
initial n-dimensional space before the linear transformations.  

To suitably group the observations according to homogeneous levels of overall risk, we used an 
unsupervised machine learning algorithm, known as k-means clustering. 

In general, cluster analysis is a technique to group data where the main purpose is to gather 
observations according to the features selected by the user. The analysis allows splitting a set of 
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observations into clusters according to similar or non-similar features. Cluster analysis does not 
require knowing the classes in advance, as in the case of supervised algorithms. 

In the k-means clustering algorithm, we assumed N  observations 1 2, ,..., nx x x  and partitioned them 

into k  clusters, each defined by a centroid 1 2, ,..., kc c c . We assigned the ix  observation to the 
cluster, such that the distance among the observation and the cluster center was minimum. 

The algorithm began by randomly choosing k centroids. After measuring the distance of each 
observation to each centroid, the observation was assigned to the closest cluster. Then, centroids 
were updated, as the average of the observations in each centroid. The procedure was repeated 
iteratively, each time minimizing the distance between observation and centroid.  

Different choices for such distance function are possible and readily available in many scientific 
computing software packages such as MATLAB: the squared Euclidean distance, one minus the 
cosine of the included angle between points (treated as vectors), or one minus the sample 
correlation between points (treated as sequences of values).  

In particular, the squared Euclidean metric does not allow keeping the outlier in the dataset 
because of the square of the distance. By doing so, the algorithm will place a specific cluster just 
for the outlier, influenced by its distance from the other observations. Later, we will propose a 
comparison among the distances in terms of the quality of clustering. 

To legitimate the clusterization carried out with the k-means algorithm, the silhouette method was 
employed. The technique provided a succinct graphical representation of how well each 
observation has been classified. The silhouette value is a measure of how similar an object is to its 
own cluster (cohesion) compared to other clusters (separation). The silhouette ranges from −1 to 
+1, where a high value indicates that the object is well matched to its own cluster and poorly 
matched to neighboring clusters. If most objects have a high value, then the clustering 
configuration is appropriate. If many points have a low or negative value, then the clustering 
configuration may have too many or too few clusters. The silhouette can be calculated with any 
distance metric, such as the Euclidean distance or the so-called Manhattan distance. 

 To decide which metrics to adopt, a comparison based on the silhouette of each method 
was performed (see Figure 9). Correlation metrics appear to be the most reliable, whereas the 
squared Euclidean would be as good if it were not for the outliers.  

A four clusters grouping was chosen for the proposed analysis. Figure 10 represents the final 
clusterization of Emilia-Romagna municipalities. Cluster evaluation was conducted considering the 
weight and the distribution of the variables. All the outliers belonged to cluster 4, which was 
developed both on the horizontal axis, led by seismic vulnerability and hydraulic risk variables, and 
slightly on the vertical one, led by seismic hazard and by hydraulic risk variables. The great majority 
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of the municipalities presented similar quantitative values of variables, in particular, those 
belonging to clusters 2 and 3. Silhouette values relative to this clusterization were good, 
reinforcing the reliability of the method proposed. 

 

(a) 

 

(b) 
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(c) 

Figure 9. Silhouette for different metrics: squared Eculidean (a), cosine (b), and correlation (c). 

 

Figure 10. Grouping of the Emilia Romagna municipalities into four clusters. 
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A.3. Results 
In this section, we show how to assign to each observation and, more generally, to each cluster, a 
label which identifies the associated level of overall risk. 

3.1. Variables Label Assignment 

First, we set intervals in an objective way, in order to suitably define labels for the variables. To 
this aim, we set interval extremals in correspondence of quartile percentages Q1, Q2, and Q3 as 
indicated in Table 1.  

Table 1. Labels and intervals for cluster definition. 

Intervals Label 

first element: Q1 Low 

Q1: Q2 Medium-to-low 

Q2: Q3 Medium-to-high 

Q3: last element High 

The chosen labels referred, respectively, to the presence of low, medium-to-low, medium-to-high 
and high amounts regarding that specific variable. Such subdivision was allowed because the 
variables were quantitative types and sorted by normal distribution. Furthermore, sorting out 
variables, the information within them was unaffected. 

We analyzed the variable with the greater value from the previous analysis, as a component that 
defined a risk, with the risk as the combined result of three factors, hazard, exposure, and 
vulnerability. We illustrate how to assign a label to each cluster for each variable considered, 
among the most relevant ones.  

We first considered the variable ,g maxa , i.e., the peak ground acceleration for the site, with a return 
period of 475 years. The first step was the extrapolation of observables in the initial dataset. 
Subsequently, we associated each observation with the respective cluster indexes and the 

respective values of ,g maxa . Then, we rearranged the observables in ascending order of ,g maxa , and 

defined the quartile as the extreme point of the interval. The cluster composition in terms of ,g maxa  
is reported in Table 2, together with the resulting assigned labels. 

Table 2. Quartile distribution of the ,g maxa  variable in the four clusters. 
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  %Q1 %Q2 %Q3 %Q4 Label 

CL1 74 20 6 0 Low 

CL2 0 25 25 50 Medium-to-high 

CL3 3 18 68 11 Medium-to-low 

CL4 7 16 13 64 High 

The labels were assigned based on the percentage prevalence of the cluster for each quartile. A 
prevalence allocated in the fourth quartile for one of the clusters indicated that the selected 

cluster gathered the most dangerous municipalities in terms of ,g maxa . On the other hand, a 
prevalence in the first quartile indicated that the cluster gathered the less dangerous 
municipalities in terms of seismic hazard. 

The same operation was carried out for the hydraulic risk component IDR_POPP2, the prevailing 
seismic vulnerability variable, i.e., the percentage of buildings under poor maintenance conditions 
E_30, and the main exposure variable, i.e., density population DENS_POP (see Tables 3–5).  

Table 3. Quartile distribution of the IDR_POPP2 variable in the four clusters. 

Table  

Quartile distribution of the E_30 variable in the four clusters. 

  %Q1 %Q2 %Q3 %Q4 Label 

CL1 41 27 22 9 Low 

CL2 25 30 29 15 Medium-to-low 

CL3 18 29 37 16 Medium-to-high 

CL4 0 4 11 86 High 

 %Q1 %Q2 %Q3 %Q4 Label 

CL1 17 20 54 9 Medium-to-low 

CL2 46 41 12 1 Low 

CL3 3 5 18 74 Medium-to-high 

CL4 4 5 9 82 High 
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Table 5. Quartile distribution of the ,g maxa  variable in the four clusters. 

  %Q1 %Q2 %Q3 %Q4 Label 

CL1 16 29 40 14 Medium-to-low 

CL2 46 28 19 7 Low 

CL3 0 0 3 97 High 

CL4 5 25 27 43 Medium-to-high 

3.2. Overall Risk Definition 

Once the variables were rearranged, the incidence of clusters for each variable were calculated 
and a label for each variable and cluster was assigned (based on the distribution of the cluster 
indexes within the variable); each cluster was assigned an overall risk label based on their score 
for each rearranged variable (Table 6). 

Table 6. Overall risk quantification for each cluster of municipalities. 

The 

significance of the assigned risk labels was strictly dependent on the starting population, i.e., from 
the region under study and do not have absolute value.  

This means that the obtained labels cannot be extrapolated to a larger scale without losing their 
significance. As shown in Figure 11, it is also possible to represent the population of each risk 
cluster by the main administrative province in the Emilia Romagna region. Obviously, frequency 
values for each province depend on the number of municipalities, which constitute each province. 

 
Hydraulic 
Risk 

Seismic 
Exposition 

Seismic 
Vulnerability 

Seismic 
Hazard 

Label 

CL1 
Medium-
to-low 

Low 
Medium-to-
low 

Low Low 

CL2 Low 
Medium-to-
low 

Low 
Medium-to-
high 

Low-to-medium 

CL3 
Medium-
to-high 

Medium-to-
high 

High  
Medium-to-
low 

Medium-to-high 

CL4 High High 
Medium-to 
high 

High High 
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Therefore, this plot allows analyzing risk clusters from the same province, but comparing clusters 
from different provinces may be inappropriate. It is worth noting that the proposed methodology 
has recognized Piacenza as the province with most low-risk municipalities, while the main cluster 
featuring Parma, Modena, Bologna, Forlì-Cesena, and Rimini is the low-to-medium risk cluster. 
Most municipalities of the Reggio-Emilia province are associated with low and low-to-medium 
clusters. Finally, each of the provinces of Ferrara and Ravenna result being equally split in two 
main clusters, namely the low and the high-risk clusters in the former case, and the low-to-
medium and high-risk clusters in the latter case.  

 

Figure 11. Population of each risk cluster by province in the Emilia Romagna region. In the y-axis, 
the number of municipalities has been reported. 
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A.4. Discussion 
Ensuring ethical, inclusive, and unbiased machine learning tools is one of the new epistemic 
frontiers in the application of artificial intelligence technologies to disaster risk management. We 
recall that this paper discusses an individual application of machine learning tools to a multi-risk 
assessment of a Northern Italy case study. For this purpose, we had at our disposal a massive 
amount of data from the ISTAT database containing indicators and data on seismic, 
hydrogeological, and volcanic risk as well as demographic, housing, territorial and geographical 
information, obtained through the integration of various institutional sources such as Istat, INGV, 
ISPRA, Italian Ministry for Cultural Heritage. Like all big data technologies, the adopted machine 
learning model proved effective in reducing CPU time and model-development costs, owing to its 
ability to process quantities and sources of data that could not have been otherwise simply 
elaborated [24,25]. We expect that the model can be used to devise mitigation measures, prepare 
emergency response, and plan flood recovery measures. The proposed tool has, indeed, the 
potential for being an operational instrument for land use managers and planners. However, 
misuse should be avoided, and, for this purpose, crucial issues such as applicability, bias, and ethics 
should be carefully considered [24–26]. The ethical issues pertaining to a possible misuse of 
Artificial Intelligence technologies are several [25], including the loss of human decision making, 
the potential for criminal and malicious use, the emergence of problems of control and use of data 
and systems, the dependence of the outcomes on users’ bias, and the possible prioritization of 
the “wrong” problems with respect to stakeholder expectations.  

Prioritization in disaster multi-risk management, additionally, is markedly affected by needs and 
expectations of private users, public agencies, and final stakeholders. For instance, a water level 
management company will be expectedly more inclined to consider flood risk as the most 
important risk to cope with, while any public agency that is called to reduce the seismic 
vulnerability of a certain region will tend to consider seismic risk as a priority. Thus, the labeling of 
the clusterization will be intrinsically permeated with the end-user’s intentions. A further aspect 
is that one should understand that publicizing the results of a multi-risk algorithm might 
inadvertently touch sensitive aspects from a privacy point of view [27].  

In many cases, criticalities rely upon an inherent disconnect between the algorithm’s designers 
and the communities where the research is conducted [26], while users may complain about a 
lack of transparency and accountability. Furthermore, immature machine learning tools might be 
used in safety-critical situations for which they are not yet ready. As suggested by Gevaert et al. 
[26], disaster-risk-management specialists constantly seek expertise on how to clearly 
communicate the results and uncertainties of machine learning algorithms to reduce inflated 
expectations. Furthermore, sensitive groups should be identified and audited for overcoming bias. 
Therefore, we suggest that, before being systematically applied, the present machine learning 
methodology is validated against established computational modeling tools. We also believe that 
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the obtained results are very promising, but further efforts are necessary to assess the proneness 
of the proposed machine learning tool to the aforementioned ethical and bias issues.  

A.5. Conclusions 
The purpose of this work is to illustrate a sound methodology for the qualitative multi-risk analysis 
at the regional scale by means of machine learning techniques that allow dealing with large and 
heterogeneous amounts of data. The initial dataset, made of variables carrying information about 
hazard, exposure, and vulnerability for both seismic and hydraulic risk for each municipality of the 
Emilia Romagna region, has been suitably normalized and reduced through the PCA, whereas 
observations have been clustered through a machine-learning algorithm. 

Then, risk labels were individually assigned to clusters for each variable. Finally, based on the score 
of each variable an overall risk label was assigned to each cluster. Results confirmed previous risk 
classifications for the case study analyzed. Both provinces with a moderate risk level and high-risk 
level have been correctly detected by the proposed approach. The reliability of the obtained 
results is dependent on the existence of valid quantitative initial data for the region under study. 
In fact, the proposed methodology does not allow qualitative data, whether they are fundamental 
or not. 

In conclusion, the proposed analysis delivers useful information: municipalities with major priority 
of intervention are identified so that stakeholders can take advantage of this tool to prioritize any 
preventive measures. Moreover, the procedure also allows identifying the most important 
variables to consider in a combined seismic and hydraulic multi-risk analysis. In other words, this 
tool allows evaluating the variables most suited to categorize the observations in terms of 
combined risk. Indeed, from the analysis, variables have emerged relative to different types of 
risks, which better communicate with each other and carry most information. By contrast, the 
methodology also allows identifying variables, which do not collaborate with variables of different 
nature and, therefore, cannot be usefully employed. 

A. Appendix  
We provide hereafter a table with the acronyms of the variables used for Figures 5–7: 

Table A1. Description of the variables used in Figures 5-7. 

DENSPOP Population Density 

AGMAX_50 
 Maximum ground acceleration (50th percentile) calculated on a grid with a 0.02° step, maximum 
(MAX) and minimum (MIN) of the values of the grid points falling within the municipal area. 

IDR_POPP3  Resident population at risk in areas with high hydraulic hazard-P3 
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IDR_POPP2  Resident population at risk in areas with medium hydraulic hazard-P2 

IDR_POPP  Resident population at risk in areas with low hydraulic hazard-P1 

IDR_AREAP1 
 Areas with low hydraulic hazard P1 (low probability of floods or extreme event scenarios))–D.Lgs. 
49/2010 (km2) 

IDR_AREAP2 
 Areas with average hydraulic hazard P2 (return time between 100 and 200 years)–D.Lgs. 49/2010 
(km2) 

IDR_AREAP3  Areas with high hydraulic hazard P3 (return time between 20 and 50 years)-D.Lgs. 49/2010 (km2) 

E5  Residential buildings in load-bearing masonry 

E6  Residential buildings in load-bearing reinforced concrete  

E7  Residential buildings in other load-bearing materials (steel, wood, ...) 

E8  Residential buildings made before 1919 

E9  Residential buildings made between 1919 and 1945 

E10  Residential buildings made between 1946 and 1960 

E11  Residential buildings made between 1961 and 1970 

‘E19  Residential buildings with three floors  

E20  Residential buildings with more than three floors 

E30  Residential buildings with a poor state of conservation 

‘E31  Residential buildings with a very poor state of conservation 
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PART B:  PROMETHEE analysis  

Social vulnerability is deeply affected by the increase in hazardous events such as earthquakes and 

floods. Such hazards have the potential to greatly affect communities, including in developed 

countries. Governments and stakeholders must adopt suitable risk reduction strategies. This study 

is aimed at proposing a qualitative multi-hazard risk analysis methodology in the case of combined 

seismic and flood risk using PROMETHEE, a Multiple-Criteria Decision Analysis technique. The 

present case study is a multi-hazard risk assessment of the Ferrara province (Italy). The proposed 

approach is an original and flexible methodology to qualitatively prioritize urban centers affected 

by multi-hazard risks at the regional scale. It delivers a useful tool to stakeholders involved in the 

processes of hazard management and disaster mitigation. 

 

B.1. Premise on the use of PROMETHEE  
Many areas in Europe and worldwide are increasingly subjected to catastrophic events. These 

events intensify the exposure of these territories to multi-risk events and make societies more 

vulnerable to entangled risks [1–7]. Globalization and climate changes are the main culprits of 

these multi-risk dynamics. Globalization, indeed, makes countries closely linked and 

interdependent, so communities are not only vulnerable to local extreme events but also to those 

occurring outside their national territories. Climate change increases, among others, the 

frequency and intensity of extreme meteorological phenomena, hydrological and flood risk, as 

well as the risk of fires. The awareness of this worrying trend has determined the need for 

adequate tools to address and mitigate these risks, as well as information campaigns to foster 

resilience and coping capacity of communities [5–7].  

Understanding risks involving vast inhabited areas is therefore paramount, particularly when 

assessing potential losses produced by a combination of multiple hazards. Hereafter, a hazard 

refers to the probability of occurrence in a specified period of a potentially damaging event of a 

given magnitude in a given area [8]. Total risk is a measure of the expected human (casualties, 

injuries) and economic (damage to property, activity disruption) losses due to adverse natural 

phenomena. Such a measure is assumed to be the product of hazard, vulnerability, and exposure 

instances [9]. Many areas on Earth are subjected to the effects of coexisting multiple hazards, 

among which floods [3,8] and earthquakes are some of the most widespread [5–7]. Though 

inhabited environments are affected by multiple hazardous processes, most studies focus on a 

single hazard [8]. 
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The choice to adopt a multi-risk analysis approach has the potential to play a fundamental role in 

increasing urban resilience, an essential factor for sustainable development, enabling cities to 

prepare, respond, and recover when hit by catastrophic events, and therefore prevent or contain 

economic, environmental, and social losses [1]. However, performing a multi-risk analysis with the 

tools and methodologies available today raises numerous challenges and difficulties [10–20]. For 

instance, an updated analysis of multi-hazard aggregated risk for infrastructures considering 

multiple potential threats has recently been proposed in reference [5].  

Risk assessment is indeed carried out through independent procedures that adopt different 

estimation metrics. This makes comparisons difficult and precludes considering correlations or 

cascading effects [11]. On the contrary, the Multiple-Criteria Decision Analysis (MCDA) technique 

is a promising approach in multiple-hazard risk analysis, even if this route has been scarcely 

explored to date [21–24].  

To pave the way for sustainable land-use plans and risk-mitigation strategies, we must analyze, 

quantify, and, especially, compare all concurrent risks [25]. To date, single-risk assessment is 

generally performed by means of independent procedures, whose results cannot be compared. 

The purpose of this paper is to devise an approach for the qualitative assessment of combined 

risks at the regional scale. In particular, the objective is to jointly analyze the flood and seismic risk 

for the Ferrara province area. The proposed approach is based on the suitable use of the 

Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE), a Multiple-

Criteria Decision Analysis technique [26–29]. The province of Ferrara is in a flatland area in the 

northern part of Italy. Historically, it has been mainly hit by floods and seismic events. Though 

floods are exogeneous processes, whereas earthquakes are exogenic, we assume flood and 

seismic hazards to be the two relevant hazards for determining a priority list. This priority list is 

meant to be useful to stakeholders and public agencies called to rapidly implement investment 

plans aimed to prevent economic and life losses and foster the coping capacity of communities to 

manage the adverse conditions induced by natural disasters. Particularly, the present objective is 

to prioritize this among the different municipalities. Therefore, the adopted level of observation 

is at the scale of the area included within each municipality.  

Assuming the municipalities of the province of Ferrara as the alternatives of the multiple-criteria 

analysis, the proposed approach defines a priority ranking among all the alternatives. The outcome 

is represented by qualitative risk maps. These maps are useful tools for stakeholders involved in 

community management and risk prevention.  
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Among the Multi-Risk Methodologies applied in Italian territories, we recall here the works by 

Gallina et al. [23,24] for the assessment of the impact of sea-level rise, coastal erosion, and storm 

surge induced by climate changes in coastal zones in North Italy. Flood and seismic risks have been 

multi-assessed through a Machine Learning framework recently devised by the authors for the 

Emilia Romagna region [30]. Up to now, the present contribution is the very first to use an MCDA 

approach for multi-risk analysis of combined flood and earthquake risks, while no other relevant 

contributions exist dealing with multi-hazard analyses of the Province of Ferrara. 

B.2. Materials and Methods 
 

 

B2.1. Geographical Context and Single Risk Description  
To introduce the concept of multi-risk assessment, it is first necessary to discuss the concept of 

single risk. Risk is basically defined as the product of three parameters: Hazard, vulnerability, and 

exposure [9]. A hazard represents the probability that an adverse event will occur in a specific area 

and in a specific time interval. Vulnerability, on the other hand, is an intrinsic characteristic of a 

system; it represents its propensity to suffer a certain level of damage following the occurrence of 

a hazard event. Finally, exposure indicates the presence of people, critical infrastructures, natural 

and cultural heritage, and much more still in hazard zones that are thereby subject to potential 

losses [4]. 

The concept of multi-risk follows as the overall risk from a multi-hazard and multi-vulnerability 

perspective. The term multi-hazard indicates several hazards affecting the same exposed elements 

(with or without space–time coincidence) or the occurrence of a hazard event that triggers 

another one giving rise to a domino or cascade effect. Furthermore, the term multi-vulnerability 

indicates those circumstances where several elements are sensitive to different possible 

vulnerabilities towards the various hazards affecting them or vulnerabilities that vary over time 

[10,11].  

The territory of the province of Ferrara is located at the north-eastern extremity of the Padana 

Plain, a flat land area in the north part of Italy crossed by the Po River and bathed by the Adriatic 

Sea on the east side. It is characterized by minimum land slopes and its altimetry is mainly under 

the mean sea level, as almost half of its area is below the mean sea level, as shown in Figure 1. 

Moreover, the eastern part of the territory is affected by subsidence phenomena as well. These 
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ground-level modifications, caused mainly by anthropogenic actions as well as by geological and 

neotectonic factors [31,32], produced a subsidence rate of up to −2.5 mm/year [31]. The main 

watercourses that flow through the Ferrara province are the Po River, which marks the northern 

border of the Reno River, and the Idice and Sillaro streams, which are not tributaries of the Po 

River, and cross the province in their last stretch. Furthermore, numerous artificial canals flow 

through the Ferrara Province, including the Cavo Napoleonico, which connects the Po and Reno 

rivers, and the Idrovia Ferrarese. 

 

Figure 1. Altimetric map of Ferrara province (free source 

https://www.bonificaferrara.it/images/Allegati/SITL/4d-3-altimetria(100).pdf, accessed 3 January 

2022, made available by Consorzio di Bonifica Pianura di Ferrara). The minimum and maximum 

extremal values of the ground level over the sea in the legend are −2 m (dark blue) and 60 m (dark 

red), respectively. 

The province of Ferrara includes 23 municipalities. Attention is hereafter restricted to the two 

main risks of the area under study, namely flood and seismic risks. Site effects associated with 
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inherent geological morphology and instability issues such as liquefaction were not considered, 

for simplicity. Desertification is another risk that has been emerging in recent years in the Po delta 

plain [10]. However, it has not been considered in the present contribution. Hereafter, flood risk 

refers to the risk that depends on the probability of occurrence of a flood, evaluated concerning 

the different typologies of watercourses that flow through the territory. The flood risk for the 

selected region was quantified by the Land Reclamation Authority of the province of Ferrara 

(Consorzio di Bonifica Pianura di Ferrara), and accounts for flood hazard, exposure, and 

vulnerability parameters.  

Seismic risk depends on the peak ground acceleration (PGA) as well as on the vulnerability of the 

built environment and the exposure of people and economic activities. We exploited the map of 

seismic hazard provided by the Italian Institute of Volcanology and Geophysics (INGV), and the 

seismic classification of municipalities in Emilia (free source https://ambiente.regione.emilia-

romagna.it/en/geologia/seismic-risk/seismic-classification, last accessed 28 January 2022), shown 

in Figure 2a. In Figure 2b, Italy is divided into different areas according to peak ground acceleration 

values [33] (free source http://zonesismiche.mi.ingv.it/, last accessed on 28 January 2022). 

 

Figure 2. (a) Seismic classification of municipalities in Emilia (https://ambiente.regione.emilia-

romagna.it/en/geologia/seismic-risk/seismic-classification, accessed 28 January 2022). (b) Seismic 

Hazard Map of Italy (free source from INGV webpage http://zonesismiche.mi.ingv.it/, accessed on 

28 January 2022). 

Finally, we used the database made available by the Italian National Institute of Statistics (Istat). 

This database was used in 2018 by the Italian Superior Institute for Environmental Protection and 

a) b) 

https://ambiente.regione.emilia-romagna.it/en/geologia/seismic-risk/seismic-classification
https://ambiente.regione.emilia-romagna.it/en/geologia/seismic-risk/seismic-classification
http://zonesismiche.mi.ingv.it/
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Research (ISPRA) to produce seismic, hydrogeological, volcanic, and social vulnerability hazard 

maps for the entire Italian peninsula. The reader is referred to the pertinent report by Trigila et al. 

[34] to obtain a detailed description of ISPRA’s methodology for the processing of the data. 

2.2. The PROMETHEE Method 

The proposed multi-hazard risk analysis procedure for the region under study is based on 

PROMETHEE [26–29], a Multiple-Criteria Decision Analysis method. It belongs to the class of 

aggregation methods based on outranking relationships. It is known for its simplicity and the ability 

to analyze information from multiple sources. PROMETHEE allows one to jointly compare data 

originally expressed in different units and scales. A flux diagram explaining the various steps of the 

PROMETHEE-based analysis can be found in reference [29]. 

PROMETHEE deals with maximization or minimization problems with k  different criteria of the 

kind 

 1 2max( min) ( ), ( ),..., ( ) | ,kor g a g a g a a A
 

(1) 

where A  is a finite set of possible alternatives and function 
( )jg a

 represents the performance of 
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where P, I, and R denote preference (P), indifference (I), or incompatibility relations (R) of one 

alternative over the other, respectively.  

 

Table 1. Types of preference function. 

By comparing all the alternatives for each criterion, a hierarchy of alternatives belonging to the 

starting space A will be obtained. When comparing two actions, ( , ) .a b A  the result of this 

comparison is expressed in terms of the preference function : (0,1)A A    that represents the 

intensity of the preference of alternative a towards alternative b. Therefore, ( , ) 0a b   indicates 

no preference of a over b (or indifference), ℘(𝑎, 𝑏) ≃ 0 indicates a weak preference of a over b, 

℘(𝑎, 𝑏) ≃ 1 indicates a strong preference of a over b, and ( , ) 1a b   indicates a strict preference 
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of a over b. In practice, the preference function will often be a function of the difference between 

the evaluations of the two alternatives considered: 

( , ) ( ( ) ( )) ( ),a b P g a g b P d     (3) 

where P is a non-decreasing function, equal to zero for negative values of d. PROMETHEE offers 

six types of preference functions (see Table 1). 

Therefore, a preference index is defined as follows: 
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(4) 

where ( , )a b  expresses the degree to which a is preferred to b over all criteria and vice versa, and 

jw
 is the weight of each criterion and expresses a measure of the importance of the relative 

criterion. 

For all the criteria, a classification is available for the various alternatives necessary to define the 

so-called outranking flows, which are the fundamental units for the PROMETHEE methodology. 

Each alternative a faces ( 1)n   other alternatives that belong to the generic space A. The two 

following outranking flows are defined: 
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(5) 

where x represents the deviation of the specific preference function with respect to the same 

function of preference for the other alternatives. ( )a  expresses how alternative a outranks all 

the others, otherwise ( )a  expresses how alternative a is outranked by all the others. The higher 

( )a  (lower ( )a ) is, the more likely alternative a is strongest; otherwise, alternative a, compared 

to the others, is weakest when ( )a  assumes small values. Once these two flows have been 

defined, it becomes very simple to make comparisons between alternatives and subsequently 

establish their order. 

PROMETHEE offers several ways to view the results; the main ones are illustrated below: 
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PROMETHEE I Partial Ranking: This is a partial ranking of the alternatives, based on positive and 

negative flows, and includes preferences, indifference, and incomparability. This scheme allows, 

therefore, to compare, where possible, the alternatives and establish their partial order of 

preference through the indices and the related outranking flows. 

PROMETHEE II Complete Ranking: This is useful when the decision maker needs a complete 

hierarchy among the alternatives of the problem. In this case, the alternatives will be compared 

in relation to their net flow ( ) ( ) ( ).a a a     PROMETHEE II allows a complete classification of 

the alternatives; however, it is less realistic and poor in information as it eliminates any possible 

factor of incomparability between the different alternatives. 

PROMETHEE Table: This displays the  , 
 , and 

  scores. The actions are ranked according to 

the PROMETHEE II complete ranking. 

PROMETHEE Rainbow: This is a diagram that allows one to highlight, for each alternative, the 

criteria that positively or negatively affect the final result. 

Profile of alternatives: This is a diagram that shows, for each alternative, the net flow  of each 

criterion. 

B.2.3. Data Collection and Processing 
Both flood and seismic risks have been included in PROMETHEE as criteria according to their 

components (hazard, exposure, and vulnerability), while the municipalities, i.e., the object on 

which to evaluate the criteria, are the alternatives. Risk parameters for each municipality are made 

available by the National Institute of Vulcanology and Geophysics (INGV), the Italian National 

Institute of Statistics (Istat), and the Land Reclamation Authorities of the Province of Ferrara. 

Accordingly, we have drawn from the aforementioned databases a simplified map of the flood 

risk. In particular, Figure 3 displays the flood hazard for the Province of Ferrara in terms of the 

probability of floods. In this map, the classification is based on Italian Government Decree n. 

49/2010 [35]. Accordingly, frequent floods are defined as those having a high probability of 

occurrence, with a return period of 20 ≤ T ≤ 50 years (P3); infrequent floods have an average 

probability of occurrence with a return period of 100 ≤ T ≤ 200 years (P2); finally, low-probability 

floods have a return period of 200 < T ≤ 500 years (P1).  
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Figure-3. Map of the flood hazard for the province of Ferrara in terms of probability of flood. 

Figure 4 provides a map of the seismic hazard for the province of Ferrara in terms of peak ground 

acceleration (PGA). The PGA-intervals are indicated in the legend. 

As for exposure-related criteria, for each municipality, we adopted three parameters: Land use 

percentage, the number of strategic buildings, and population density. All of them were drawn 

from the Istat database. The strategic buildings were defined based on the presence and number 

of halls, police stations, fire brigade buildings, schools, universities, water lifting plants, hospitals, 

and civil protection centers. This information was obtained from the website of the province of 

Ferrara (http://www.provincia.fe.it/, 1 October 2021), as per educational and public institutions 

and centers, and from the website of the Consorzio di Bonifica Pianura di Ferrara as per water 

lifting plants (https://www.bonificaferrara.it/, 1 October 2021).  

http://www.provincia.fe.it/
https://www.bonificaferrara.it/


 
 

 
                                 
 
 
 
 

 

 
 

 
 
 
  

 
 

   

38 

 

Figure 4. Map of the seismic hazard for the province of Ferrara in terms of peak ground 

acceleration. 

Specifically, four classes of land use percentages were obtained based on the ratio between the 

urbanized area divided by the total area. In synthesis, we collected the municipalities into four 

land use classes (Figure 5), four classes in terms of the number of strategic buildings (Figure 6), 

and four classes of population density (Figure 7).  

As for the vulnerability criteria, we adopted a single non-dimensionalized parameter, which 

accounts for the average age of buildings. Knowing the age of construction and the corresponding 

number of buildings, we computed the following vulnerability index: 

𝐼𝑣 =  
𝐴 𝛼1+𝐵 𝛼2+𝐶 𝛼3+𝐷 𝛼4 

𝐴+𝐵+𝐶+𝐷
 ,   

where 𝐴, 𝐵, 𝐶 𝑒 𝐷 represent the number of buildings built between the end of 1800 and 1945; the 

number of buildings built between 1946 and 1980; the number of buildings built between 1981 

and 2000, and finally, the number of buildings built from 2001 up to now. 𝛼1,  𝛼2, 𝛼3 𝑒 𝛼4 are 

coefficients equal to 1, 0.75, 0.5, and 0.25, respectively. The vulnerability index Iv results in being 

mainly related to the age of buildings, and its map is shown in Figure 8.  
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Figure 5. Land use map for the province of Ferrara. 
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Figure 6. Map of strategic buildings incidence for the province of Ferrara. 
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Figure 7. Map of the population density for the province of Ferrara. 
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Figure 8 Map of the vulnerability parameter for the province of Ferrara computed as a function of 

the building age. 

B.2.4. Normalization and Weight Assignment  
All the data have been collected in an evaluation matrix, whose rows correspond to each 

alternative (i.e., each municipality), while each column corresponds to each selected criterion. In 

other words, the i,j-th element of the evaluation matrix expresses the value of the i-th alternative 

relating to the attribute of the j-th criterion and describes the performance of each alternative 

regarding each criterion. 

It should be noted that criteria are represented through different scales and units. This precludes 

mutual comparisons. Thus, it is necessary to further homogenize the data contained in the 

evaluation matrix and proceed with comparisons through normalization. Through the preference 

function, the performance of the alternatives is transformed into a dimensionless value, ranging 

from o to 1. As a first attempt, we adopted the Type 1 preference function described in Table 1, 

which does not require the definition of any threshold. Subsequently, the linear preference 

function was also used. 
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Finally, we attributed weights to each criterion. Through this step, decision makers can make their 

preferences explicit, since it is not ensured that all the criteria take on the same importance. We 

first decided to attribute the same weight to each criterion. Then, a sensitivity analysis was 

performed with varying weights.  

The risk maps shown in the following sections indicate three classes of risk levels, namely low, 

medium, high. It is emphasized that this classification must be intended as a pure ranking in terms 

of the relative urgence of investments. It does not at all intend to indicate the level of safety in 

absolute terms of the various municipalities. This classification answers the question as to whether 

the method can provide the priority level associated with a certain municipality and help to decide 

how to distribute investments over various municipalities. 

B.2.5. Sensitivity Analysis  
To verify the reliability of the results obtained, a sensitivity analysis was carried out. During this 

sensitivity analysis, we retraced the procedure by which the results were obtained and identified 

the steps most affected by uncertainties and subjectivity, considering their influence on the final 

ranking. Specifically, the choice of the preference function and the choice of weights appeared to 

be the most subjective. As for the choice of the preference function, a previous study [26] 

recommends assuming a linear preference function endowed with the definition of p, q 

thresholds. Two approaches are adopted for the determination of p and q: The so-called zero-max 

method, which imposes that the indifference threshold q is assigned the value of zero while the 

preference threshold p is set to be equal to the maximum difference between the evaluations of 

the criteria. 

Table 2. Preference functions and the associated thresholds p, q, and s. 

  

Criteria 

 Flood Hazard PGA Land Use 
Strategic 

Buildings 

Age of 

Buildings 

Population 

Density 

Min/Max max Max max max max max 

Weight 1 1 1 1 1 1 

Preference function Usual Linear Linear Usual Linear Linear 
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Thresholds absolute Absolute absolute absolute absolute absolute  

q: Indifference, zero-max 

Sensitivity analysis: increase of single criteria weights 

Scenario 0 
All criteria have the same weight.  

p = 17% 

Scenario 1 

Increase the weight of the i-th criterion by 50% 

compared to its initial value. 

25.5%ip  ; other criteria 14.9%p 
 

Scenario 2 

Increase the weight of the i-th criterion by 50% 

compared to its previous value. 

38.2%ip  ; other criteria 12.3%p   

Scenario 3 

Increase the weight of the i-th criterion by 50% 

compared to its previous value. 

57.4%ip  ; other criteria 8.5%p   

n/a 0.000 0.0000 n/a 0.000 0.000 

p: Preference (zero-max) n/a 0.098 0.1896 n/a 0.158 523.00 

s: Gaussian (zero-max) n/a n/a n/a n/a n/a n/a 

q: Indifference (mean-std) n/a 0.093 0.0261 n/a 0.0676 16.10 

p: Preference (mean-std) n/a 0.155 0.1081 n/a 0.766 238.60 

s: Gaussian (mean-std) n/a n/a n/a n/a n/a n/a 

 

The mean-std method requires the calculation of the average value and the standard deviation of 

a set of differences between the evaluations of the criteria. In the mean-std method, the 
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indifference threshold is assigned the value of the difference between the average value and 

standard deviation, while the sum between the average value and standard deviation is assigned 

to the preference threshold. Following [26–28], we adopted the preference function of the linear 

type for the quantitative criteria, that is flood hazard, land use, the age of buildings, and population 

density. However, the algorithm was also run by choosing the usual preference function, which is 

the simplest possible one. The thresholds were computed as shown in Table 2. As for the sensitivity 

on the weights, the four scenarios described in Table 3 have been considered. 

B.3. Results 
In the following Section, we describe the outcomes of the multiple-criteria analysis for the usual 

and linear preference function as well as the results of the sensitivity analysis performed for 

varying weight changes.  

B.3.1. Usual Preference Function 
When the usual preference function is used, the algorithm assumes equal weights. We recall that, 

here, thresholds p and q are not required. Basically, what is provided to the analyst is an order of 

priority where the municipalities in the province of Ferrara are ordered from the most sensitive to 

combined flood and seismic risk to the one that is least affected. Table 4 shows the final ranking 

of the alternatives.  

This is not the only way to visualize the results: The PROMETHEE rainbow plot, shown in Figure 9, 

allows one to highlight, for each alternative, the criteria that positively   or negatively affect the 

results. In Figure 9, the colors are representative of the criterion: Yellow indicates the criteria 

relating to exposure, red is used for seismic hazard, green for vulnerability, and blue for flood 

hazard. For example, for the municipality of Ferrara (first in the ranking), it can be observed that 

the criterion that has a negative effect is the one relating to the flood hazard, whereas the other 

criteria have a positive effect on the Ferrara municipality. On the contrary, in the municipality of 

Jolanda di Savoia (last in the ranking), the only criterion that has a positive influence is the one 

relating to vulnerability, while all the others have a negative influence. 

 

Table 3. Sensitivity analysis on the weights of the criteria. 

Rank Alternatives 𝚯     
   
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1 Ferrara 0.6111 0.7302 0.119 

2 Cento 0.5873 0.7222 0.1349 

3 Tresigallo 0.4127 0.6111 0.1984 

4 Vigarano Mainarda 0.2857 0.5873 0.3016 

5 Mirabello + Sant’Agostino 0.2698 0.5794 0.3095 

6 Argenta + Portomaggiore 0.2381 0.5238 0.2857 

7 Bondeno 0.1825 0.4921 0.3095 

8 Copparo 0.0238 0.4127 0.3889 

9 Poggio Renatico 0.0238 0.4524 0.4286 

10 Comacchio 0.0000 0.4048 0.4048 

10 Formignana 0.0000 0.381 0.381 

12 Voghiera −0.0238 0.3651 0.3889 

13 Lagosanto −0.0317 0.3889 0.4206 

14 Berra −0.1587 0.3016 0.4603 

15 Masi Torello −0.1746 0.2937 0.4683 

16 Ro −0.1905 0.2857 0.4762 

17 Fiscaglia −0.2063 0.2778 0.4841 

18 Mesola −0.2857 0.2381 0.5238 

19 Ostellato −0.3571 0.1984 0.5556 

20 Goro −0.3651 0.1984 0.5635 

21 Codigoro −0.3651 0.2222 0.5873 



 
 

 
                                 
 
 
 
 

 

 
 

 
 
 
  

 
 

   

47 

 

 

Figure 9. PROMETHEE rainbow plot for the usual preference function. On the vertical axis, the 

preference function Θ is reported. The yellow bar indicates the criteria relating to exposure, red 

is used for seismic hazard, green for vulnerability, and blue for hydraulic hazard. 

Based on the ranking provided by PROMETHEE, it is possible to create a risk map of the 

municipalities of the province of Ferrara that highlights high-priority areas as those with a high 

level of combined flood and seismic risk, medium priority areas as the areas characterized by a 

medium combined-risk level, and, finally, low combined-risk areas. 

This map is shown in Figure 10. It can be seen that the three risk levels are identified by three 

different colors: Red is used for high risk, orange for medium risk, and yellow for low risk.  

 

Table 4. Ranking of alternatives for the usual preference function. 

22 Jolanda di Savoia −0.4762 0.1429 0.619 
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Rank Alternatives   
  

  

1 Cento 0.459 0.5086 0.0496 

2 Ferrara 0.3545 0.393 0.0385 

3 Tresigallo 0.1821 0.2642 0.0821 

4 Mirabello + Sant’Agostino 0.1444 0.2622 0.1179 

5 Argenta + Portomaggiore 0.1352 0.2182 0.0829 

6 Bondeno 0.1257 0.2069 0.0812 

7 Vigarano Mainarda 0.112 0.255 0.143 

8 Copparo 0.0505 0.1684 0.1179 

9 Poggio Renatico 0.031 0.2216 0.1906 

10 Comacchio 0.0224 0.1631 0.1406 

10 Voghiera −0.0422 0.0984 0.1406 

12 Formignana −0.0721 0.0937 0.1657 

13 Fiscaglia −0.0761 0.0868 0.1628 

14 Lagosanto −0.0898 0.1385 0.2283 

15 Codigoro −0.101 0.1155 0.2164 

16 Ostellato −0.1092 0.0736 0.1828 

17 Ro −0.1362 0.0589 0.195 

18 Masi Torello −0.1371 0.0557 0.1928 

19 Berra −0.1551 0.0688 0.2239 
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Figure 10. Multiple-risk map for the Ferrara province obtained for the usual preference function 

(Type 1 in Table 1). The risk levels strictly indicate the relative priority ranking for decision-makers 

and do not indicate the effective safety level of the various municipalities. 

3.2. Linear Preference Function 

The ranking of alternatives for the linear preference function and zero-max method is shown in 

Table 5, while the corresponding multi-risk map is shown in Figure 11. These maps were obtained 

by associating the quantitative criteria, i.e., flood hazard, land use, age of buildings, and population 

density, with a linear preference function, while thresholds q and p were determined with the 

zero-max method.  

Table 5. Ranking of alternatives for the linear preference function and zero-max method. 

20 Jolanda di Savoia −0.1947 0.0408 0.2355 

21 Mesola −0.2203 0.0353 0.2556 

22 Goro −0.283 0.0137 0.2968 
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Rank Alternatives   
  

  

1 Cento 0.4532 0.4849 0.0317 

2 Ferrara 0.3769 0.4123 0.0354 

3 Tresigallo 0.2051 0.2613 0.0562 

4 Vigarano Mainarda 0.1219 0.2185 0.0966 

5 Mirabello+ Sant’Agostino 0.078 0.1835 0.1056 

6 Lagosanto 0.0597 0.1319 0.0722 

7 Poggio Renatico 0.0523 0.167 0.1147 

8 Argenta+ Portomaggiore 0.0307 0.1133 0.0826 

9 Copparo 0.0261 0.1107 0.0846 

10 Bondeno 0.0222 0.1075 0.0853 

11 Comacchio 0.0217 0.1075 0.0857 

12 Codigoro 0.0125 0.1053 0.0928 

13 Formignana −0.1232 0.0146 0.1378 

14 Masi Torello −0.1275 0.0086 0.1361 

15 Goro −0.1278 0.0106 0.1384 

16 Mesola −0.1317 0.0069 0.1386 

17 Berra −0.1383 0.0046 0.1429 

18 Voghiera −0.1383 0.0041 0.1424 

19 Ro −0.1385 0.004 0.1425 

20 Fiscaglia −0.1497 0.002 0.1517 
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 For a linear 

preference function of the aforementioned quantitative criteria, and thresholds q and p 

determined by the mean-std method, we obtained the results shown in Table 6 and Figure 12. 

Table 6. Ranking of alternatives for the linear preference function and std-mean method. 

By comparing the results obtained from the usual and the linear preference functions, it can be 

understood that changes of the preference function do not reflect large changes of the final risk 

maps. The only difference is that the risk levels of the municipality of Vigarano Mainarda swap 

with Bondeno, and Fiscaglia swaps with Lagosanto.  

By comparing the maps in Figures 11 and 12, obtained with the thresholds chosen with the zero-

max and mean-std methods, respectively, we observe that the risk levels of Lagosanto, Vigarano 

Mainarda, and Codigoro increase. Particularly, we observe that the choice of the preference 

function affects the final ranking of the alternatives especially when the thresholds are chosen 

according to the mean-std method.  

21 Ostellato −0.1839 0 0.1839 

22 Jolanda di Savoia −0.2014 0 0.2014 
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Figure 11. Multiple-risk map for the Ferrara province for the linear preference function with the 

thresholds chosen with the zero-max method. The risk levels strictly indicate the relative priority 

ranking for decision-makers and do not indicate the effective safety level of the various 

municipalities. 
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Figure 12. Multiple-risk map for the Ferrara province for the linear preference function with the 

thresholds chosen with the mean-std method. The risk levels strictly indicate the relative priority 

ranking for decision-makers and do not indicate the effective safety level of the various 

municipalities. 

Regardless of the preference function chosen, the maps obtained present a similar risk trend, i.e., 

the territory is divided into two parts: The municipalities of the western part of the territory of the 

province of Ferrara, plus Ferrara and Tresigallo, are characterized by a medium–high risk level; the 

upper-eastern part of the province is characterized by a medium–low risk level. 

3.3. Sensitivity Analysis on the Choice of Weights 

As introduced in Section 2, the sensitivity analysis on the weights was performed by first increasing 

the weight of each individual criterion at a time, and then assuming the simultaneous increase in 

the weights of the three “exposure”-related criteria, namely land use, population density, and 

strategic buildings. Specifically, the weights were changed according to Scenarios 0, 1, 2, and 3 

described in Table 3.  
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(a) (b) 

  

(c) (d) 

  

(e) (f) 
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Figure 13. Weights sensitivity analysis, multi-risk maps; (a) flood hazard weight increase assuming 

Scenarios 2 or 3; (b) PGA weight increase assuming Scenario 1; (c) PGA weight increase assuming 

Scenario 2; (d) land use weight increase assuming Scenarios 2 or 3; (e) strategic buildings weight 

increase assuming Scenario 1; (f) strategic buildings weight increase assuming Scenarios 2 or 3. 

The risk levels strictly indicate the relative priority ranking for decision-makers and do not indicate 

the effective safety level of the various municipalities. 

For the sake of brevity, we present hereafter the results obtained by assuming the usual 

preference function. For the reader’s convenience, the results are reported as maps, as in the 

previous sections.  

In the first part of the analysis, the criteria are changed according to the following order: Flood 

hazard, PGA, land use, strategic buildings, age of buildings, and population density. Hereafter, we 

omit the maps obtained for the changes of the weights relating to the criteria of strategic buildings 

and age of buildings, for brevity. Figures 13 and 14 illustrate the various risk maps obtained by 

increasing the weights. 

  

(a) (b) 

Figure 14. Weights sensitivity analysis, multi-risk maps; (a) Scenario 2, population density weight 

increase; (b) Scenario 3, population density weight increase. The risk levels strictly indicate the 

relative priority ranking for decision-makers and do not indicate the effective safety level of the 

various municipalities. 

With Scenario 1 based on the variation of the flood hazard weight, the ranking of the municipalities 

remains almost unchanged, as the multi-risk map is identical to that of Scenario 0. On the other 
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hand, the maps change when Scenarios 2 and 3 are adopted, as shown in Figure 13a. More marked 

differences can be observed when the weight of the PGA (Figure 13b,c) is changed. By increasing 

the weight of the land-use criterion, an increase in Scenario 1 does not reflect evident changes in 

the multi-risk map (Figure 13d). On the other hand, changes in Scenarios 2 and 3 affect the multi-

risk map. Looking back at the strategic building criterion, we observe differences in the risk map 

when the first change of Scenario 1 is applied, compared to Scenario 0 (Figure 13e), and more so 

with the last two increases of Scenario 2 (Figure 13f). For the criterion of population density, the 

first increase in the weight according to Scenario 1 does not affect the map (see Figure 14a), while 

the subsequent increases in the weight bring about noticeable modifications. In particular, the 

multi-risk map reported in Figure 14b assigns a comparatively low level of attention to the Argenta 

municipality, which, however, is associated with a medium seismicity level according to the 

territorial classification of Figure 2a. Depending on the stakeholders’ expectations, this might 

suggest that weights should not be varied to the extent of downgrading the seismic risk level of 

certain municipalities classified at medium to high seismic risk. 

Lastly, results of the sensitivity on the weight choice for the criteria related to exposure are 

presented in Table 7. Proceeding as illustrated in Section 2, the first increase in the weight does 

not alter the risk map, which remains the same as in Scenario 0, whereas with the changes of 

Scenario 2, greater variations can be observed.  
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Table 7. Sensitivity analysis on the exposure factor, ranking of alternatives (EXP: EXPOSURE). 

Scenario 1: WEIGHT = 0.22; OTHERS = 011 Scenario 2: WEIGHT = 0.32; OTHERS = 0.01 

Rank Alternativa   
  

  Alternativa   
  

  

1 Ferrara 0.7153 0.8064 0.0911 Cento 0.9452 0.9683 0.0231 

2 Cento 0.7093 0.8061 0.0968 Ferrara 0.9168 0.9538 0.037 

3 Tresigallo 0.5092 0.6746 0.1654 Tresigallo 0.696 0.7975 0.1015 

4 Vigarano Mainarda 0.2908 0.5771 0.2863 Lagosanto 0.4603 0.6797 0.2193 

5 
Argenta + 

Portomaggiore 
0.2279 0.534 0.306 Vigarano Mainarda 0.3006 0.5575 0.2569 

6 
Mirabello + 

Sant’Agostino 
0.219 0.5413 0.3222 

Argenta + 

Portomaggiore 
0.2083 0.5536 0.3454 

7 Bondeno 0.1597 0.4971 0.3375 
Mirabello + 

Sant’Agostino 
0.1207 0.4675 0.3468 

8 Lagosanto 0.1359 0.488 0.352 Bondeno 0.1154 0.507 0.3915 

9 Copparo 0.0416 0.4381 0.3965 Comacchio 0.1044 0.5017 0.3973 

10 Comacchio 0.0356 0.4378 0.4022 Copparo 0.076 0.4873 0.4113 

11 Poggio Renatico −0.0499 0.4041 0.454 Mesola −0.0919 0.3574 0.4493 

12 Formignana −0.0661 0.3555 0.4216 Masi Torello −0.1448 0.3309 0.4757 

13 Voghiera −0.1127 0.3295 0.4422 Goro −0.1563 0.3252 0.4815 

14 Masi Torello −0.1644 0.3064 0.4708 Codigoro −0.1861 0.3564 0.5426 

15 Berra −0.2045 0.2863 0.4908 Poggio Renatico −0.1924 0.3107 0.5031 

16 Mesola −0.2197 0.2787 0.4984 Formignana −0.1938 0.3064 0.5002 
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17 Ro −0.226 0.2756 0.5016 Voghiera −0.2848 0.2607 0.5455 

18 Goro −0.2939 0.2416 0.5355 Berra −0.2929 0.2569 0.5498 

19 Codigoro −0.3041 0.268 0.5721 Ro −0.2949 0.2559 0.5507 

20 Fiscaglia −0.3385 0.2193 0.5578 Fiscaglia −0.594 0.1063 0.7003 

21 Ostellato −0.4816 0.1451 0.6267 Ostellato −0.7225 0.0418 0.7643 

22 Jolanda di Savoia −0.5829 0.0971 0.68 Jolanda di Savoia −0.7893 0.0087 0.798 

Therefore, concluding the sensitivity analysis of weights, it can be inferred that, in general, the 

results are sensitive to the increase in the weights of the criteria, determining a risk map that 

varies from case to case, causing the risk of some municipalities to decrease while that of others 

increased. However, these variations do not upset the overall trend, which highlights a territory 

divided into two parts, that of the municipalities of the western part of the territory of the province 

of Ferrara characterized by a medium–high risk level, and the municipalities of the north-eastern 

area characterized by a medium–low risk level. 

3.4. Remarks on the Limitations of the Analysis 

The proposed methodology requires the definition of several parameters, criteria, and weights, 

whose choice resulted in being strongly dependent on the expectations of stakeholders and end-

users. Thus, the obtained results should be seen as a first attempt towards the proposal of an 

MCDA methodology that does not require great mathematical expertise, is flexible, and can be 

easily adapted to many situations. Nevertheless, further efforts are necessary in order for the tool 

to be readily exploited by public authorities and decision makers. Furthermore, it is worth 

highlighting other limitations inherent in the present analysis. 

The first type of limitation is mainly related to the availability of data. Indeed, the choice of the 

criteria was based on the availability of the relevant information, which led, for some criteria, to a 

purely qualitative evaluation. Greater availability, accuracy, and ease of retrieval of the data would 

lead to the creation of a more complete and more precise analysis, and it could also contribute to 

the development of operational tools and software.  

Secondly, this analysis neglected cascade effects, an aspect that deserves further investigation in 

the future [11]. 
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Thirdly, the present contribution does not consider the impact of modeling assumptions on the 

seismic risk assessment. At the relevant scale of observations of the present analysis, specific 

structural aspects connected to the vulnerability levels of the buildings cannot be easily 

considered. In this regard, we recall that specific structural aspects and modeling assumptions 

play, among others, a key role for seismic risk evaluation at both the building and the urban scale 

[36]. A recent study focusing on South America has shown the uncertainties and biases that the 

use of simplified models or heterogenous data may produce in the determination of seismic 

vulnerability [36]. For completeness, seismic risk evaluation is extensively discussed, for instance, 

in the aforementioned contributions [36–39] and the references cited therein.  

Finally, we recall that the seismic classification shown in Figure 2 has been merely used as a 

technical-administrative reference for establishing the priority of actions and measures aimed at 

preventing and mitigating seismic risk. It must not be used to determine the local seismic action 

or for the structural design of buildings, which, instead, rely upon more detailed maps highlighting, 

for instance, the presence of site effects due to the inherent geological structure of the ground or 

instability effects such as liquefaction. Therefore, the present analysis should be purposefully 

extended in order to consider the aforementioned local effects [40].  

B.4. Conclusions 
For the present case study, the application of the Multiple-Criteria Decision Analysis (MCDA) 

methodology through the PROMETHEE algorithm has proved an innovative and promising 

operational tool. Its potential derives from the ability to both analyze information from various 

sources and jointly systematize data expressed in different units and scales. The application of this 

methodology has made it possible to rank the various municipalities in terms of the relative 

proneness to joint flood and seismic hazards. We recall that the objective of the methodology is 

not to quantify the safety level in absolute terms of the various municipalities. Its scope is, indeed, 

to provide useful information for decision makers and public authorities to define future 

intervention priorities. We further emphasize that, in the authors‘opinion, the present study is 

original as it applies the PROMETHEE algorithm for the first time to a multi-risk assessment of 

seismic and flood hazards.  

Depending on the territory to be studied, the relevant risks could be different, and therefore, 

different criteria must be used to express them. Nevertheless, the generalization to other multi-

risk analyses and different case studies deserves further considerable efforts and thoughtful 

insights. Full validation of the present methodology is also of utmost importance and calls for new 
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developments. However, the proposed methodology is flexible. This suggests that, with due 

precautions and adaptations, it is possible to apply it to different risk scenarios, such as scenarios 

including coastal floods and landslides, while keeping the same applicative scheme.  

Finally, the obtained results have shown that the proposed methodology is an operational tool 

that, once further validated, can be used by end users, whether modelers or decision makers, to 

urgently allocate resources and increase the coping capacity of communities in the case of 

catastrophic events. 
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