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1 Abbreviations 
AR5:  5th Assessment Report of the Intergovernmental Panel on Climate Change 
CCA:  Canonical Correlation Analysis 
CGCMs: Fully coupled General Circulation Models 
CMIP5: 5th phase of the Coupled Model Intercomparison Project 
CMCC:  Fondazione Centro euro-Mediterraneo sui Cambiamenti Climatici 
DJF:  December-January February 
ENS:  Ensemble Average  
GCMs:  General Circulation Models 
IPCC:   Intergovernmental Panel on Climate Change 
JJA:  June-July-August 
MAM:  March-April-May 
MSLP: Mean Sea Level Pressure 
NetCDF:  Network Common Data Form 
RCMs:  Regional Climate Models 
RCP4.5:  Representative Concentration Pathway to a radiative forcing of 4.5 W/m2 at 

the end of 2100 wrt preindustrial values 
RCP8.5:  Representative Concentration Pathway to a radiative forcing of 8.5 W/m2 at 

the end of 2100 wrt preindustrial values 
SON: September-October-November 
SD:  Statistical Downscaling 
Z500:  Geopotential at 500hPa 
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2 Introduction 
 
The document (D3.2.2) provides a description of the climate data that has been delivered 
by CMCC, Arpae and DHMZ to the ADRIADAPT project users, both in terms of dynamical 
and statistical downscaling outputs. These tools are shortly presented in Section 2, the 
climatic variables delivered within the project are presented in Section 3. The report also 
includes a deep analysis of the performance/skill of the statistical downscaling technique 
implemented by Arpae-Simc, This work completes the historical validation process that 
has been already provided for the dynamical downscaling in the previous deliverable 
(D3.2.1). The results of statistical validation over Italian and Croatian case studies are 
presented in Sections 4 and 5 for temperature and precipitation indices. The analysis of 
statistical validation of SD is concluded with a description of trends in simulated and 
observed time series of temperature and precipitation, presented in Section 6. 
The validation of statistical downscaling (SD) has been done for the seasonal mean and 
extreme indices of temperature and precipitation described in D3.1.1: “Definition of a set 
of climate change indicators for stakeholders“. 
 
As already anticipated in D3.2.1, within ADRIADAPT project, the simulated data cover 
the period 1961 to 2100, following historical forcing up to 2005 and two different possible 
radiative emission scenarios to the end of the century: a business as usual (RCP8.5) one 
and a more moderate one (RCP4.5). 
 
The evaluation of future projection will be the subject of D3.3.1 “Detailed quantification of 
climate change signal in the region of interest with special emphasis on severe impacting 
events” due at month 24.  
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3 Description of Models and parameters  
3.1 Regional Climate Models  

 
One of the ways to investigate the climate system and its variability is through climate 
models. Considering the global scale, a climate model can be an atmosphere (or ocean)-
only general circulation model (GCM) or a fully coupled general circulation model 
(CGCM). To improve the ability of a climate model in representing small-scale features, 
instead of a general circulation model, regional climate model (RCM) and statistical 
downscaling technique (SD) can be used: this approach makes it possible to increase the 
spatial resolution, reducing the extension of the domain considered. In fact, the 
performance and the spatial resolution of GCMs have continuously improved in the recent 
years, but the typical state of the art spatial scale is still too coarse to realistically 
reproduce present climate and eventually project climate change signals on local scales, 
especially in the presence of complex orography (Rummukainen, 2010; IPCC, 2001) such 
as over the European domain.  
The EURO-CORDEX (COordinated Regional climate Downscaling EXperiment) (Nikulin 
et al., 2012) on the 12.5 km EUR-11 spatial domain is one source of data foreseen within 
ADRIADAPT and in the next chapters we will evaluate model ability in representing the 
climate over the ADRIADAPT domain (Figure 1), not only in terms of averages but also 
extremes, comparing them with observational data-sets. 
EURO-CORDEX is the European branch of the international CORDEX (COordinated 
Regional climate Downscaling EXperiment) initiative, which is sponsored by the World 
Climate Research Program (WRCP) to organize an internationally coordinated framework 
to produce improved regional climate change projections, through regional climate 
models, for all land regions world-wide (http://www.euro-cordex.net/). The CORDEX-
results serve as input for climate change impact and adaptation studies within the timeline 
of the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change 
(IPCC) and beyond. The experiments used to provide the RCM dataset described in this 
report are based on the standard setup of the model for the CORDEX ensemble 
simulations (Nikulin et al., 2012, Vautard et al. 2013) over the EUR-11 domain thus over 
the European domain with a horizontal resolution of 12.5 km. This means that the RCMs 
compute the “climate equations” over each grid cell (one cell represent an area of 12.5km 
x 12.5km), based on previous values (the model time step is of the order for few minutes) 
and adjacent cell values. The model is able to evolve in time, with the only constrain of 
radiative forcing (atmospheric concentration of greenhouse gasses, ozone and aerosols) 
and boundary conditions: ocean conditions are expected at the lower boundary of the 
RCM (such as sea surface temperature, current velocities, etc.) and atmospheric 
conditions (temperature, wind, water fluxes, etc.) of the surrounding area are expected at 
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the border of the cube on which the model is planned to simulate. As already stated in 
this way the model is able to evolve in time, providing also long term time series of climate 
data, based on different potential assumptions in terms of radiative forcing. 
Four RCMs are considered in this contest (Scoccimarro et al. 2017). Table 1 lists the 
considered RCMs. In Table 1 the list of the driving GCMs, furnishing boundary conditions 
to the relative RCM is also provided. Model biases typically depend on the region 
analyzed and are partly related to parametric uncertainty and choices in model 
configuration and can be affected by internal variability as well as by uncertainties of the 
observational reference data themselves (Kotlarski et al. 2014).  
 
Table 2 lists the raw and derived fields that we already compared to observations in 
D3.2.1. This is a subsample of the Table 2 and Table 3 parameters defined in D3.1.1.  
Anyway, at this stage, all of the raw data required for the computation of derived indices 
are already available on the CMCC ftp server (see below for ftp credentials).  
 
Model 
name Driving GCM  Institute  

SMHI-RCA4 CNRM-CM5 Swedish Meteorological and Hydrological Institute, 
Rossby Centre 

KNMI-
RACMO22E ICHEC-EC-EARTH Royal Netherlands Meteorological Institute 

INERIS-
WRF331F IPSL-CM5A-MR 

IPSL (Institut Pierre Simon Laplace) and INERIS 
(Institut National de l Environnement industriel et 
des RISques) 

CNRM-
ALADIN53 CNRM-CM5 Centre National de Recherches Meteorologiques 

Table 1: Regional Climate Models involved in ADRIADAPT data collection (same as 
Table 1 in D3.1.1). 
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Figure 1: Domain selected (black contour) for the provision of climate (table 2) and 
extreme (table 4) parameters within ADRIADAPT. Red boxes indicate three sub-
regions (C=Cervia, V=Vodice) considered in the next sections.  Colours represent 
the local orography. Units are [m]. (same as Figure 3 in D3.1.1).  
 
The data format used is NetCDF (http://www.unidata.ucar.edu/software/netcdf/). NetCDF 
is an abstraction that supports a view of data as a collection of self-describing, portable 
objects that can be accessed through a simple interface. Array values may be accessed 
directly, without knowing details of how the data are stored. Auxiliary information about 
the data, such as what units are used, is stored with the data. Generic utilities and 
application programs can access NetCDF datasets and transform, combine, analyse, or 
display specified fields of the data.  
Data are now available through the CMCC ftp server (download.cmcc.bo.it – user and 
password sent privately to the ADRIADAPT partner reference person).  
 

Field Description ( the 
corresponding code in D3.1.1, 
table 4, is also indicated) 

Field Acronym 
Vertical level 

Field Unit 
Relative 
validation 
figures 

2 meter Air Temperature tas 2 meter [°C] 2,3,4 

99 percentile of temperature: rare 
events of high temperature (7) 

tas_99 
(about 100 events in 
30y) 

2 meter 

[°C] 

5 

99.9 percentile of temperature: 
extremely rare events of high 
temperature (7bis) tas_99.9(about 10 

events in 30y) 

2 meter 

[°C] 

6 
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99 percentile of max daily 
temperature: rare events of high 
temperature (8) 

tasmax_99 (about 100 
events in 30y) 

2 meter 

[°C] 

7 

99.9 percentile of max daily 
temperature: extremely rare events 
of high temperature (8bis) 

tasmax_99.9 (about 10 
events in 30y) 

2 meter 

[°C] 

8 

99.9 percentile of Perceived 
Temperature: extremely rare 
events  (20bis) 

Humidex_99.9(about 
10 events in 30y)  

2 meter 

[] 

9 

Precipitation pr Surface [mm/d] 10,11,12 

Extreme precipitation (1) pr_99 Surface [mm/d] 13 

Intense Precipitation  (2) pr_95 Surface [mm/d] 14 

Table 2: List of meteorological fields investigated in this document over the 
historical period (in brackets the relative parameter number consistent with table 
2 of D3.1.1) 
 

The indices presented in Table 2 are selected within the list defined in D3.1.1 to describe 
the frequency and the intensity of extreme events. The extreme events are here defined 
based on threshold percentile (STARDEX (http://www.cru.uea.ac.uk/stardex). 
In order to give an idea on the percentile approach, considering daily data, over the whole 
year, the 99 percentile of a 30-year time series of temperature data, corresponds to the 
temperature value reached in about 100 days only: about 4 days in a year. For the 
identification of even more rare and potentially impacting events, also the 99.9 percentile 
is taken into account for some of the investigated parameters, representing events 
happening 10 times only in a 30y time series of daily values: one event every three years.   
In other words, the 95th/99th/and 99.9th percentiles are used to represent moderately rare 
/ rare / extremely rare events in the right tail of the event distribution.  In this document 
we present some of the parameters defined within the D3.1.1 in terms of comparison with 
observational data sets. In particular temperature and precipitation data and derived 
parameters are compared with E-OBS observational data set (Cornes et al. 2018), a 
gridded version of the ECA dataset with daily temperature, precipitation and pressure 
fields. The ECA dataset contains series of daily observations at meteorological stations 
throughout Europe and the Mediterranean. 
On the other hand, parameters derived also based on relative humidity, such as the 
humidex index used to represent the perceived temperature, are compared to JRA-55 
reanalysis data set (Kobayashi et al 2015), since there are no gridded observations of 
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relative humidity. A reanalysis product is obtained running a General Circulation Model, 
adapting, time step after time step, the “computed climate” to the observed one, based 
on Data Assimilation processes building on available observations.  
This is done to increase the spatial and temporal resolution of climate data, remaining as 
much as possible close to the observed (coarser) values. JRA-55 reanalysis cover the 
entire globe. The Japanese 55 year re-analysis data set has a spatial resolution of 0.5◦ 
longitude by 0.5◦ latitude and 60 vertical levels with a top layer at 0.1 hPa. The data 
assimilation system in JRA-55 has been improved since the time of the production of the 
prior JRA-25, including the introduction of a new radiation scheme, and a 4D-Var 
assimilation scheme, a state of the art algorithm which uses observations to update the 
past in addition to the current model state. The use of a reanalysis data set is necessary 
to obtain relative humidity gridded data at the daily time frequency. Noteworthy 2m 
temperatures from JRA-55 reanalysis compare favourably well with the observed values 
(Simmons et al 2017) over Europe (not shown).  
For the sake of simplicity we will refer to JRA-55 climate fields as ‘observations’ in the 
rest of the paper. 
 
This document is intended to complement the validation process through the statistical 
downscaling technique, dynamically downscaled was already presented in deliverable 
3.2.1. 
 

3.2  Statistical Downscaling schemes (SDs) 
 
The statistical downscaling (SD) is a tool used to perform simulations at local scale, 
stations or grid points. There are different statistical downscaling tools applied in the 
climatology, ranging from Perfect-Prog (PP) approaches to Model Output Statistics 
(MOS). Perfect Prog is based on the assumption that the local climate is correlated with 
the state of the large-scale fields and the local features such as topography or land-sea 
distribution (Von Storch 1995,Wilks 2006). Taking into account these assumptions, the 
local climate information is derived from the construction of a statistical relationship that 
links observed large –scale atmospheric fields (predictors) with observed local fields 
(predictands). As regards the Model Output Statistics technique (MOS) this is based on 
a statistical scheme that is calibrated using simulated predictors and observed 
predictands. 
In the present project the Perfect Prog approaches is used by Arpae to simulate seasonal 
future climate changes over the case studies. The link between local climate and large 
scale is detected through the canonical correlation analysis –CCA-(Von Storch 1995). 
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The most important patterns provided by the CCA are used in a multivariate regression 
SD schemes -CCAReg (Tomozeiu et al., 2007; 2014).  
The main advantages of SD are that they are computationally inexpensive and allow the 
direct downscaling of indices related to extreme weather events, even up to local scale 
(station or grid point). The SD disadvantages refer to the fact that they need long and 
homogeneous observational time series for calibration and validation of the statistical 
relationship. 
In the present work, the SD is implemented at seasonal time scale for the following 
domain:  
- Cervia (Figure 2, “C”-yellow area) and Savio Valley Municipalities Union (Figure 2, 
“SVMU”-green area), both of them belong to Emilia-Romagna region and are referred in 
the report as Italy case studies (Figure 2). The SVMU area includes: Cesena, Mercato 
Saraceno, Sarsina, Bagno di Romagna and Verghereto municipalities. The grid points 
that belong to C and SVMU are presented in ANNEXES in Table A, information extracted 
from Eraclito climatic data set available at https://arpaeprv.datamb.it/dataset/erg5-
eraclito. 
- Sibenik (S) and Knin (K) meteorological stations - referred in the report as Croatia 
case studies. 
 

 
Figure 2: (a) Resolution of observed data set of temperature and precipitation –Eraclito 
data set; Italian case studies: Cervia-C- (yellow) and the Savio Valley Union 
Municipalities- SVMU (green); (b) Eraclito grid points and associated codes (c) 
 
 
A description of SD implemented in ADRIADAPT project is summarised in two steps: 
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• Step1: calibration and validation of SD (CCAReg scheme) 

In this step of SD implementation, the model/scheme is calibrated and validated using 
observed data, namely: large-scale predictors from ECMWF-ERA40 + ERA-interim re-
analysis (https://www.ecmwf.int/en/forecasts/datasets/archive-datasetsand local 
observational predictands from Italy and Croatia. The calibration (construction) of SD is 
done over the period 1961-1985 and 2006-2010 while the validation is done over 1986-
2005. Before the calibration, firstly the local and large scale fields are filtered through 
empirical orthogonal functions (EOFs) then is performed the CCA analysis. A subset of 
CCA pairs is then used in the multivariate linear statistical model (CCAReg) to estimate 
the seasonal predictands (Tomozeiu et al.,2007, 2014).  

The predictands are represented by the seasonal mean and extreme indices of 
temperature and precipitation over the Italian and Croatian case studies. The seasonal 
climate indices are described in Table 3, and are computed from daily observed minimum, 
maximum temperature and precipitation.  
As regards Cervia and Savio Valley Municipalities predictands, these are computed using 
daily data of temperature and precipitation from Eraclito climatic data set, available online 
at https://arpaeprv.datamb.it/dataset/erg5-eraclito. This data set has a spatial resolution 
of 5kmx5km, cover the period 1961-2015 (Figure 2a), data deeply described by Antolini 
et al (2015). The observed Croatia predictands, seasonal climate indices (Table 3), are 
derived from daily temperature and precipitation from Sibenik and Knin stations over 
1961-2010 period, data provided by the Croatian project partner. The indices presented 
in Table 3 are selected within the list defined in D3.1.1 and describe the frequency and 
the intensity of extreme events. Some indices are based on threshold percentile 
(STARDEX,  https://crudata.uea.ac.uk/projects/stardex/), and represent part of indices 
simulated also by dynamical downscaling. 
As regards predictors, these are the large scale fields: namely geopotential at 500hPa 
(Z500), mean sea level pressure (MSLP), temperature at 850hPa derived from ERA40 
and ERA interim ECMWF archives (https://www.ecmwf.int/en/forecasts/datasets/archive-
datasetscover the window 90°W-90°E and 0°-90°N and the period 1961-2013 period. 
 
Taking into account the different periods available for predictands and predictors, we 
choose a common period of analysis, namely 1961-2010.  
 

Field 
Field 
Acronym Field Description Unit 

Precipitation pr Amount of seasonal precipitation [mm] 
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Maximum 
temperature tasmax Seasonal average of maximum temperature [C] 
Minimum temperature tasmin Seasonal average of minimum temperature [C] 
Intense Precipitation pr_90p Seasonal 90th percentile of daily precipitation [mm] 

Consecutive dry days cdd 
Seasonal maximum number of consecutive 
days with precipitation lower than 1 mm [d] 

High maximum 
temperature  tasmax_95p 

Seasonal 95th percentile of daily maximum 
temperature [C] 

Low minimum 
temperature  tasmin_5p 

Seasonal 5th percentile of daily minimum 
temperature [C] 

Frost days fd 
Seasonal number of days with minimum 
temperature below 0°C [days] 

Tropical night index tr 
Seasonal number of days with minimum 
temperature greater than 20°C [days] 

Heat Wave Duration 
index hwd 

Seasonal maximum number of consecutive 
days with maximum temperature greater than 
90th percentile [days] 

 
Table 3: List of local fields (climate indices) used in statistical downscaling (SD) over 
ADRIADAPT case studies 
 
An important step in SD is the validation process. The SD models are built for each 
season and index, choosing each time a different subset of predictors, fields extracted 
from the ECMWF re-analysis. Finally, only the optimum SD scheme for each field and 
each season is retained and used then for future projections.  
The validation of SDs over 1986-2005 period helps to select the best SD model. The 
performance (skill) of the downscaling model is quantified at grid point/station for each 
index/season in terms of: BIAS, correlation coefficient (CORR), root-mean square-error 
(RMSE). Tomozeiu et al (2007) underlined that the skill of the downscaling models is 
dependent on: predictands, predictors (large-scale field, single or combined), domain 
(area) of predictors, and filtered data process. The sensitivity of SDs to these factors is 
also tested in this work.  
Another important aspect in SD is to test how work the SDs when is feed with predictors 
from GCMs (Table 4) simulated during control run/historical period. In this case, the 
results depend by the performance of GCMs to reproduce the predictors. This analysis is 
also done in the report. 
 

• Step2: simulations of future changes of local climate (grid points/stations 
spatial resolution )  
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In the second step, ones the schemes built and selected the best ones for each season 
and index, these SDs are then applied to the future anomalies of predictors simulated by 
GCM from CMIP5 experiments (https://pcmdi.llnl.gov/mips/cmip5/terms-of-use.html) in 
the framework of RCP4.5 and RCP8.5, in order to obtain seasonal future changes of local 
indices over ADRIADAPT case studies.  

The future periods are: 2021-2040, 2041-2060, 2061-2080, 2081-2100 while the 
historical period is 1986-2005 period. The list of GCM CMIP5 experiments used to feed 
the SDs scheme for the ADRIADAPT case studies is presented in Table 4. 

 

Global Climate 
Model  
(GCMs name)  

Modelling Centre  

CMCC-CM Centro Euro-Mediterraneo per i Cambiamenti 
Climatici 

MPI ESM-MR Max Planck Institute for Meteorology 

CNRM -CM5 Centre National de Recherches Meteorologiques  

Can-ESM2 Canadian Centre for Climate Modelling and 
Analysis 

Table 4: List of GCMs from CMIP5 experiment that feed the statistical downscaling 
scheme (CCAReg scheme) in ADRIADAPT project 
 
 
The analysis of future projections obtained at this step will be the aim of the next 
deliverable, namely D3.3.1 “Detailed quantification of climate change signal in the region 
of interest with special emphasis on severe impacting events” due at month 24. 
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4 Description of the whole data set available (dynamical and 
statistical downscaled data) available  

The aim of this section is to list the full dataset obtained following the two downscaling 
approaches. Table 5 shows the data availability for historical and future scenarios as from 
dynamical downscaling (results from the four model listed in table 1 are available for all 
of the mentioned parameters). 
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Table 5: List of fields (climate indices), descriptions and periods of availability, delivered 
by dynamical downscaling for the whole ADRIADAPT domain. “djf” indicates December 
to February period. “jja” indicates June to August period. 
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Table 6 shows the data availability within the project, derived from statistical downscaling 
techniques (SD) over the grid points that belong to Cervia (C), Union Valley Municipalities 
(SVMU) (Table A from ANNEXES) and for Sibenik (S), Knin (K) stations. As could be 
noted, the outputs are seasonal. The seasons are defined standard, namely: winter 
includes December, January and February (djf); spring includes March, April, May (mam); 
summer includes June, July, August (jja) and autumn includes September, October and 
November (son). 
 
 

 
 
Table 6: List of fields (climate indices), descriptions, domain, periods and type of data 
availability delivered by statistical downscaling (SD) 
 
 
Green colour in tables 5 and 6 indicates that the data are already available (June, 30 
2020) on the CMCC ftp site. Yellow colour indicates that data are under preparation and 
will be ready on July 2020.  White color indicates that these data are not provided: the 
99.9 percentile of a time series is not provided when  there are less than 1000 numbers 
in the series (as in the case of a single year). 
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5 Temperature climate indices statistically downscaled: evaluation 
over the present period (1985-2006) 

 In this Section we present the validation of SD (CCAReg) model constructed using 
observed predictors from ECMWF-ERA40 + ERA-interim re-analysis and, local 
observational temperature indices-predictands from Italy and Croatia. To this aim the 
downscaled indices over 1986-2005 are compared with observed climate indices. Skill 
coefficients (correlation coefficients, BIAS and RMSE) are computed between observed 
and downscaled time series over the validation period (1986-2005). 
 
The work done in the setup of CCAreg schemes for temperature indices underlies that 
T850 and Z500 are good predictors for these indices. Similar results had been obtained 
in previous work done over Emilia-Romagna and over Northern Italy (Tomozeiu et 
al.,2007,2014), using different periods for calibration and validation. This underlies the 
robustness of selected predictors. 

5.1.1 Temperature climate indices over Italy: validation of SD simulations (predictors 
from ERA40) 

 
The SD schemes implemented over Italian case studies shows in generally good skill for 
seasonal temperature-mean and extremes indices. 
Figure 3 (a,b,c) displays for each season the skill coefficients (BIAS, RMSE and CORR) 
for Cervia –C- and Savio Valley Municipalities Union –SVMU- ( mean over grid points). 
As could be noted, BIAS of seasonal minimum temperature shows values comprised 
between 0.3 °C (winter) and -0.2°C (autumn) while BIAS of seasonal maximum 
temperature is comprised between -0.4°C (spring) and -0.8°C (summer). The model 
underestimates the maximum temperature during all seasons, more in summer. The 
RMSE is between 0.6 and 1 for seasonal minimum temperature and between 0.8 and 1.2 
for seasonal maximum temperature (Figure 3b). As regards correlation coefficient, this is 
statistically significant (significance level 0.05) during all seasons, except for autumn 
maximum temperature where the significance level is 0.10 (Figure 3c).   
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a) 

 

b) 

 

c) 

Figure 3: Skill of SD computed between downscaled time series of temperature- (°C) 
(ERA40 predictors) and observed data –mean over Cervia (C ) and Savio Valley 
Municipalities Union (SVMU) -1986-2005 period 
 
An example of the spatial distribution of BIAS and CORR coefficients over Cervia and 
Savio Valley Municipalities Union (C and SVMU) are presented in Figure 4 for winter 
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minimum temperature, similar distributions are obtained for other seasons (maps not 
shown).  
 

  
a)  b)  

Figure 4: Spatial distribution of BIAS-(°C )-(a) and CORR (b) for winter minimum 
temperature computed between SD and observed data (1986-2005) over C and SVMU 
areas  
 
Figure 5 presents an overview of the distribution of the correlation coefficients for:  the 5th 
daily percentile of winter minimum temperature (tasmin_5p djf), 95th daily percentile of 
summer maximum temperature (tasmax_95p jja), winter frost days (fd djf), summer heat 
wave duration (hwd jja), summer tropical nights (tr jja). The results are represented as 
box plots including all grid points from C and SVMU areas. 
The median values from the box plots reveal correlation above 0.5 (significance level 
0.05) for all indices, for some grid points the correlation reach 0.9 but there are also some 
grid points where the correlation is lower (0.3). 
Figure 6 displays BIAS of summer heat wave duration, summer tropical nights and winter 
frost days. The model underestimate tropical nights and heat wave duration with one day 
(-1 day) and with four days in the case of frost days (-4 days).  
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Figure 5:  Box plots of correlation coefficients for extreme temperature (C and SVMU 
areas-all points) 
 
  

 

Figure 6: BIAS of seasonal extreme temperature (C and SVMU areas-all points) 
 

5.1.2 Temperature climate indices over Croatia: validation of SD simulations (predictors 
from ERA40) 

 
The SD scheme has been implemented separately for stations from Croatia. Daily station 
data from Croatia have been provided to Arpae, 1961-2010 period. The data have been 

Box plots of correlation coefficients computed between observed and downscaled data for  seasonal extreme
indices of temperature1986-2005 (C and SVMU areas)
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analysed before index computation and, only time series with more that 80% of data have 
been retained and use in the SD implementation. The ADRIADAPT case studies are 
referred to Sibenik (S) and Knin (K) stations. The fields downscaled are the same as in 
Italian case (see Table 3). The same calibration and validation period have been used in 
the setup of SD (CCAreg scheme). The work done in the setup underlines that T850 and 
Z500 are good predictors for temperature, mean and extremes. 
An overview of the validation of SD, for Sibenik (S) and Knin (K) in terms of correlation 
coefficients, BIAS and RMSE computed between observed and downscaled data over 
1986-2005 is presented in Table 7 and Table 8. 
 

 

tasmin BIAS 
(°C) 

RMSE CORR 

Winter (djf) 0.24 0.71 0.76 
Spring (mam) -0.05 0.64 0.89 
Summer (jja) -0.23 0.44 0.95 
Autumn (son) -0.12 0.71 0.76 

 

tasmax BIAS 
(°C) 

RMSE CORR 

Winter (djf) -0.19 0.55 0.83 
Spring 
(mam) 

-0.36 0.50 0.90 

Summer (jja) -0.81 0.50 0.93 
Autumn 
(son) 

-0.23 0.71 0.69 

 
Table 7: Sibenik –SD skills of seasonal minimum and maximum temperature, period 
1986-2005  
 

 

tasmin BIAS 
(°C) 

RMSE CORR 

Winter (djf) 0.58 0.94 0.65 
Spring (mam) 0.18 0.53 0.83 
Summer (jja) -0.06 0.39 0.91 
Autumn (son) -0.11 0.67 0.71 

 

tasmax BIAS 
(°C) 

RMSE CORR 

Winter (djf) -0.21 0.63 0.88 
Spring (mam) 0.11 0.46 0.94 
Summer (jja) -0.57 0.79 0.93 
Autumn (son) 0.13 0.68 0.80 

 
Table 8: Knin – SD skill of seasonal minimum and maximum temperature, period 1986-
2005  
 
As seen from the tables above, the correlation coefficient is statistically significant for all 
seasons and indices (significance level 0.05), the BIAS is in generally bellow +- 0.5°C 
except for summer  maximum temperature (see table 7). The RMSE is between 0.4 and 
1.  
The SD scheme provides good skills also for seasonal extreme temperature indices. 
Figure 7 displays for Sibenik station the correlation coefficients (a) and BIAS (b) for some 
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extremes, similar results are obtained for Knin (not shown). The CORR (Figure 7a) is 
statistically significant with values that range from 0.6 to 0.9, BIAS is around 1-2 days for 
index as HWD / Fd/Tropical nights (figure7b).  

  
a) b) 

Figure 7: Sibenik- skills of validation of SDs computed over 1986-2005 period 
 
Summarising the results over Italy and Croatia we can say that the SD works well for 
seasonal mean and extreme temperature. 
 
How works these SD schemes when are fed with predictors simulated by four 
GCMs during present, namely 1986-2005 (historical periods)?  

5.1.3 Temperature climate indices: validation of SDs over Italy and Croatia (predictors 
from four GCMs) 

 
A comparison of the local climate indices simulated by the SD fed with predictors from 4 
GCMs (Table 4) during 1986-2005 is presented below. The figure are box plots and are 
referred to observed data, simulated data with predictors from ERA40 (era40) and with 
predictors from 4GCMs: Can_ESM2 (can_esm2), CMCC-CM (cmcc), CNRM-CM5(cnrm) 
and MPI-ESM-MR (mpi). In addition the Ensemble Mean computed from 4SD applied to 
4GCMs is computed and represented (ens). The box plots are referred to the distribution 
of the mean value of each index (mean or extremes) computed over 1985-2006, obtained 
throughout the bootstrap method (due to short period-20years). 
 
Figures from 8 to 11 show the results for mean and extreme indices during winter and 
summer seasons-Italy case study. 
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a) b) 
 
Figure 8: Box plots of observed and simulated winter Tmin (a) and summer Tmin (b) over 
Italian case studies (mean over C and SVMU areas all points)(°C) 
 

  
a) b) 

 
Figure 9: Box plots of observed and simulated winter (a) and summer (b) maximum 
temperature (°C) over Italian case studies (C and SVMU areas-all points) 
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a) b) 
  

Figure 10:  Box plots of observed and simulated winter 5th percentile of minimum 
temperature (a) and summer 95th percentile of maximum temperature (b) Italian case 
studies (C and SVMU areas-all points) (°C), over 1986-2005 
 

 
a)                                                                                           b) 

Figure 11 Box plots of observed and simulated winter frost days (a) and summer heat 
wave duration (b) Italian case studies (C and SVMU areas-all points) (°C),over1986-2005 
 
As could be noted the skill of simulations vary from season to season, from index to index 
and from model to model (GCMs). The median of box plots simulated by the 4 SD-GCMs 
is in generally similar with observed, except some situations when some of the GCM 
under/over estimates (figure 9b). The box plots includes also the 25th, 75th percentile as 
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well as the minimum and maximum values. For some indices, the SD applied to GCMs is 
not able to catch the extreme values of indices (heat wave from figure 11b).  
 
Similar results are obtained also over Croatia. One example is presented in Figure 12(a 
and b) and Figure 13(a and b). 
 

  
a) b) 

 
Figure 12 Box plots of observed and simulated (average over stations)  winter minimum 
temperature (a) and summer maximum temperature (b) over Croatia case studies (°C), 
over 1986-2005 
 

 

 

 
a)  b) 

 
Figure 13 Box plots of observed and simulated (average over stations) winter frost days 
(a) and summer heat wave duration (b) Croatia  case study  (days)-over 1986-2005   
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As in the case of Italy, there is a variability between models, seasons and indices. The 
use of ensemble mean could be one solution to reduce the uncertainties, both for Italy 
and Croatia cases. 
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6 Precipitation climate indices statistically downscaled: evaluation 
over the present period (1985-2006) 

In this Section we present the validation of SD (CCAReg) schemes calibrated, over 1961-
1985 and 2006-2010, using observed predictors from ECMWF-ERA40 + ERA-interim re-
analysis and local observational precipitation indices-predictands from Italy and Croatia. 
Some steps as for temperature are done also for SDs of precipitation. The downscaled 
indices over 1986-2005 are then compared with observed climate indices. Skill 
coefficients (correlation coefficients, BIAS and RMSE) are computed between seasonal 
observed and downscaled time series over the validation period. 

6.1.1 Precipitation climate indices over Italy: validation of SDs simulations (predictors 
from ERA40) 

 
Generally, the skill of SDs for precipitation indices from this work is lower than that of 
temperature. The skill is different from season to season. Figure 14 shows the correlation 
coefficients (CORR) (a), BIAS  (b) and RMSE(c), mean over all grid points from C and 
SVMU of seasonal amount of precipitation. Even if the length of time series in validation 
is not enough for statistical significance-20 years- the results of correlation are also 
associated by significance level. Work done for precipitation using longer period for 
calibration and validation  emphasis an improvement of the values of skill indices, even if 
the seasonal behaviour is the same, for example less skill in spring. 
As could be observed from Figure 14, the season with high correlation coefficient for 
precipitation is winter (significance level 0.05) while, the season with lower correlation 
coefficient for amount of precipitation is spring. The BIAS shows an overestimation during 
winter (15mm) while an underestimation is during spring, summer and autumn. 
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a) 

 
b) 

 
c) 

Figure 14: Correlation coefficient (a), BIAS(b) and RMSE (c) of SDs computed between 
downscaled time series of precipitation (ERA40 predictors) and observed data –mean 
over Cervia (C ) and Savio Valley Municipalities Union (SVMU) -1986-2005 period (units 
for BIAS mm/season) 
 
 
The analysis of SDs skills implemented for extreme of precipitation, namely 90th percentile 
and maximum number of consecutive dry days, show similar results like in total amount 
of precipitation, a variability among the season.  
An example of the spatial distribution of correlation coefficient is presented in figure 15, 
for winter precipitation and winter maximum number of consecutive dry days. 
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a) b) 

Figure 15: Spatial distribution of correlation coefficient for winter precipitation (a) and 
winter maximum number of consecutive dry days (b), over Cervia (C ) and Savio Valley 
Municipalities Union (SVMU) -1986-2005 period 

6.1.2 Precipitation climate indices over Croatia: validation of SDs simulations (predictors 
from ERA40) 

The SD schemes have been implemented separately for stations from Croatia. Daily 
stations data of precipitation from Croatia have been provided to Arpae, 1961-2010 
period. Only time series with more that 80% of data have been retained and use in the 
SD implementation. The results are referred to Sibenik (S) and Knin (K) stations. The 
fields downscaled are the same as in Italian case (see Table 3). The same calibration 
and validation period have been used in the setup of CCAreg.  
An overview of the validation  of SD, for Sibenik (S) and Knin (K) in terms of correlation 
coefficients, BIAS and RMSE computed between observed and downscaled data over 
1986-2005 is presented in Table 9 for Sibenik (a) and Knin (b).  
a)       b) 

 

precipitation BIAS 
(mm) 

RMSE CORR 

Winter (djf) -5 63 0.8 
Spring (mam) 7 49 0.35 
Summer (jja) 30 82 0.5 
Autumn (son) 35 64 0.6 

 

precipitation BIAS 
(mm) 

RMSE CORR 

Winter (djf) 12 62 0.8 
Spring (mam) -22 70 0.4 
Summer (jja) 35 81 0.5 
Autumn (son) 26 94 0.6 
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Table 9: Skill between observed and downscaled seasonal precipitation (ERA40 
predictors, period 1986-2005) at Sibenik (a) and Knin (b) 
 
As could be noted, the results are similar as in Italian cases. The skill of the amount of 
precipitation is higher during winter, where less skill is during spring. Similar results are 
obtained for the extreme precipitation. The SDs constructed for Sibenik and Knin, 
underestimates the maximum consecutive dray days during winter, spring and summer 
(-1 to-3days) and overestimates during autumn (6 days). As regards 90th percentile of 
daily precipitation, the SDs underestimates the values for Sibenik and Knin during winter 
and spring and overestimate during summer and autumn (up to 3mm). 
 
 
How works these SD schemes when are fed with predictors simulated by four 
GCMs during present, namely 1986-2005?  

6.1.3 Precipitation climate indices: validation of SDs over Italy and Croatia (predictors 
from four GCMs) 

A comparison of the local climate indices simulated when SD is feed with predictors from 
4 GCMs during present with observations is present bellow. The figure includes box plots 
of: observed data, simulated data with predictors from ERA40 (era40), with predictors 
from 4GCMs: Can_ESM2 (can_esm2), CMCC-CM (cmcc), CNRM-CM5(cnrm), MPI-
ESM-MR (mpi). The Ensemble Mean computed from 4SD applied to 4GCMs (ens) is also 
represented. 
The box plots are referred to the distribution of the mean value of each index (mean or 
extremes) computed over 1985-2006, obtained throughout the bootstrap method (due 
to short period-20years). As regards amount of precipitation, the SDs applied to 4 GCMs 
show generally an overestimation during winter, spring and summer. The same signal, 
an overestimation have been obtained also for 90th percentile of daily precipitation and 
consecutive dray days. An example of these simulations is presented in figure 16 for 
Italian case studies and figure 17 for Croatia. 
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Figures 16: Box plots of observed and simulated precipitation indices over Italian case 
studies (C and SVMU areas), period 1986-2005 (units for precipitation: mm/season) 
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Figures 17: Box plots of observed and simulated precipitation indices over Croatia case 
study (average over stations) 1986-2005 (unit for precipitation is  mm/season, days ) 
  
All the data, namely observed and simulated climate indices produced by statistical 
downscaling over the grid points from Cervia, Savio Valley Union Municipalities and 
Sibenik and Knin, are available on the CMCC ftp server (ftp credentials provided to project 
partners). 
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7 Trends of statistically downscaled climate indices time series  
 
Another method to evaluate the performance of the SD implemented in this work is the 
analysis of trends over the validation period. The temporal variability is compared with 
observed one. Despite we can’t expect year by year correspondence between observed 
and modelled values because the only model time constrain is relative to the radiative 
forcing (greenhouse gas and aerosols concentrations), it is important to verify if SDs is 
able to capture the observed tendencies, for the case of  SDs fed by ERA40 and by 
4GCMs predictors. 
Taking into account that one advantage of SD is that down to the local scale, we select 
one grid point from “C” area , namely Milano Marittima, and one grid point for SVMU 
namely Mercato Saraceno  (see Annexes for code and coordination). 
Trends of observed and simulated mean fields (tasmin, tasmax) and extremes such as 
low minimum temperature (5th percentile of Tmin) and high maximum temperature (95th 
percentile of Tmax), are presented in Figure 18 for Milano Marittima, Mercato Saraceno, 
and Sibenik. 
In the figure 18, red line is the observed anomalies computed from Eraclito data set (obs), 
blue line represents the anomalies downscaled with predictors from  ERA40 reanalysis 
(era) while the grey lines represent the downscaled values with 4GCMs members. 
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Figure 18: Temporal variability of observed (obs) and simulated temperature indices  (°C) 
(era40, mpi, cnrm, cmcc_cm, can_esm2) over validation period- Milano Marittima, 
Mercato Saraceno and Sibenik  
 
As could be observed for temperature, trends are in generally well captured by the SD 
with ERA40 and SD applied to 4GCMs, even if for some models/seasons/indices the 
magnitude is not the same like that of observed time series. The SD is not able to capture 
“very extreme high anomalies” such as thus of 2003, but this is due to the fact that the 
data set used in the setup cover 1961-2010, and 2003 is “ a single “event during this 
period (poor statistics for the setup of  SD).  
As regards precipitation, trends are not statistically significant, the modelled precipitation 
interannual variability is reasonably in agreement with observations. Figure 19 presents 
temporal variability for some indices at Milano Marittima, Mercato Saraceno and Sibenik. 
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Figure 19: Temporal variability of observed (obs) and simulated precipitation indices 
(era40, mpi, cnrm, cmcc_cm, can_esm2) over validation period (mm/season)- Milano 
Marittima, Mercato Saraceno and Sibenik  
 
 
The results presented in the sections above could be summarised as follows: 

1) the SDs implemented works in generally well for temperature and precipitation 
indices; temperature indices present better skill than precipitation indices; 

2) the SDs feed with predictors from 4 GCMs during historical period suggest to use 
the Ensemble Mean method, in order to reduce uncertainties due to 4 GCMs 
simulations, to evaluate signal of local future climate. 
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8 Conclusions 
This document provides a description of the climate data that has been delivered by 
CMCC, Arpae and DHMZ to the ADRIADAPT project users, both in terms of dynamical 
and statistical downscaling outputs. These tools are shortly described and  the climatic 
variables delivered within the project are presented. This report also includes a deep 
analysis of the performance/skill of the statistical downscaling technique implemented by 
Arpae-Simc, This work completes the historical validation process that has been already 
provided for the dynamical downscaling in the previous deliverable (D3.2.1). The results 
of statistical validation over Italian and Croatian case studies for temperature and 
precipitation indices and the analysis of statistical validation of SD is concluded with a 
description of trends in simulated and observed time series of temperature and 
precipitation. 
The validation of statistical downscaling (SD) has been done for the seasonal mean and 
extreme indices of temperature and precipitation described in D3.1.1: “Definition of a set 
of climate change indicators for stakeholders“. 
 
The simulated data cover the period 1961 to 2100, following historical forcing up to 2005 
and two different possible radiative emission scenarios to the end of the century: a 
business as usual (RCP8.5) one and a more moderate one (RCP4.5). 
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11 ANNEXES 
 Table A:  Coordination of grid points that belong to Cervia (C)  and Savio Valley Union 
Municipalities (SVMU) 
 

No
. 

Code Nome Comune Prov Lat. Lon Height(
m) 

1 1755 RIDRACOLI BAGNO DI 
ROMAGNA 

FORLI-
CESENA 43.8675 11.8447 

740.8 

2 1756 LA LAMA BAGNO DI 
ROMAGNA 

FORLI-
CESENA 43.8225 11.8447 

1058.8 

3 1794 POGGIO ALLA 
LASTRA 

BAGNO DI 
ROMAGNA 

FORLI-
CESENA 43.9125 11.9077 

524.9 

4 1795 STRABATENZA BAGNO DI 
ROMAGNA 

FORLI-
CESENA 43.8675 11.9077 

716.7 

5 1796 PIETRAPAZZA BAGNO DI 
ROMAGNA 

FORLI-
CESENA 43.8225 11.9077 

922.9 

6 1835 S.PIERO IN 
BAGNO 

BAGNO DI 
ROMAGNA 

FORLI-
CESENA 43.8675 11.9708 

611.8 

7 1836 BAGNO DI 
ROMAGNA 

BAGNO DI 
ROMAGNA 

FORLI-
CESENA 43.8225 11.9708 

719 

8 1837 VERGHERETO VERGHERETO FORLI-
CESENA 43.7775 11.9708 

915.4 

9 1874 MONTE 
MASCOLINO 

BAGNO DI 
ROMAGNA 

FORLI-
CESENA 43.9125 12.0338 

655.4 

10 1875 PASSO 
DELL'INCISA 

BAGNO DI 
ROMAGNA 

FORLI-
CESENA 43.8675 12.0338 

662.6 

11 1876 MONTE 
COMERO 

VERGHERETO FORLI-
CESENA 43.8225 12.0338 

1058.9 

12 1877 MONTECORON
ARO 

VERGHERETO FORLI-
CESENA 43.7775 12.0338 

920.7 

13 1912 MERCATO 
SARACENO 

MERCATO 
SARACENO 

FORLI-
CESENA 44.0025 12.0969 

299 

14 1913 RULLATO CIVITELLA DI 
ROMAGNA 

FORLI-
CESENA 43.9575 12.0969 

457.4 

15 1914 RUSCELLO SARSINA FORLI-
CESENA 43.9125 12.0969 

473.2 

16 1915 LAGO DI 
QUARTO 

SARSINA FORLI-
CESENA 43.8675 12.0969 

542.1 

17 1916 RIOFREDDO VERGHERETO FORLI-
CESENA 43.8225 12.0969 

862.3 

18 1917 MONTE 
FUMAIOLO 

VERGHERETO FORLI-
CESENA 43.7775 12.0969 

1050.3 
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No
. 

Code Nome Comune Prov Lat. Lon Height(
m) 

19 1950 POLENTA CESENA FORLI-
CESENA 44.0925 12.1599 

193.5 

20 1951 BORELLO CESENA FORLI-
CESENA 44.0475 12.1599 

179.8 

21 1952 MONTE 
IOTTONE 

MERCATO 
SARACENO 

FORLI-
CESENA 44.0025 12.1599 

246 

22 1953 MERCATO 
SARACENO 

OVEST 

MERCATO 
SARACENO 

FORLI-
CESENA 

43.9575 12.1599 

388.2 

23 1954 SARSINA SARSINA FORLI-
CESENA 43.9125 12.1599 

316.9 

24 1988 MARTORANO CESENA FORLI-
CESENA 44.1825 12.2230 

23.3 

25 1989 CESENA CESENA FORLI-
CESENA 44.1375 12.2230 

43.9 

26 1990 MONTEREALE CESENA FORLI-
CESENA 44.0925 12.2230 

138.4 

27 1991 SORRIVOLI CESENA FORLI-
CESENA 44.0475 12.2230 

240.6 

28 2026 CASTIGLIONE 
DI CERVIA 

CERVIA RAVENN
A 44.2725 12.2860 

-0.1 

29 2027 PISIGNANO CESENA FORLI-
CESENA 44.2275 12.2860 

4.4 

30 2028 S.GIORGIO CESENA FORLI-
CESENA 44.1825 12.2860 

13.4 

31 2029 CESENA EST CESENA FORLI-
CESENA 44.1375 12.2860 

31.3 

32 2030 CALISESE CESENA FORLI-
CESENA 44.0925 12.2860 

101.9 

33 2066 MILANO 
MARITTIMA 

CERVIA RAVENN
A 44.2725 12.3491 

0 

34 2067 PINARELLA CERVIA RAVENN
A 44.2275 12.3491 

-1.2 

35 2069 BULGARNO' CESENA FORLI-
CESENA 44.1375 12.3491 

15.7 

 
 

Table B: Coordination of Sibenik and Knin stations (Croatia case studies) 
 

No
. 

Nome Lat. Lon Height(
m) 

1 SIBENIK 43°43'41'
' 

15°54'23'
' 77 
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2 KNIN 
44°2'27'' 

16°12'25'
' 255 

 


