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Executive Summary 
 

This activity presents the application of analyses to the layers of information collected 

in the Integrated platform of FAIRSEA for the detection of hot spots of aggregation of 

target species as a preliminary basis for ecological identification of fisheries 

management areas.  

A set of different Spatial Distribution Models (SDM; Gaussian GAM, Tweedie GAM, 

Delta-GAM, Random Forest and Gradient Boosting Machine) was applied to detect 

aggregations of juveniles and adults of 6 demersal species in the Adriatic-Ionian area 

(GSA17, 18 and 19). The SDM ensemble was applied to abundance indices (N/km2) of 

European hake (Merluccius merluccius), red mullet (Mullus barbatus) and Norway 

lobster (Nephrops norvegicus), from MEDITS trawl surveys in the three GSAs, and 

abundance indices of common sole (Solea solea), mantis shrimp (Squilla mantis) and 

common cuttlefish (Sepia officinalis) from SOLEMON beam trawl survey in GSA17. 

The ensemble of SDMs was implemented using spatio-temporal variables (e.g., 

latitude, longitude, depth) of trawl survey data from module BSTAT (Act. 4.4) and 

including additional environmental covariates such as data obtained from modules 

HYDRO (Act. 4.1), BGC (Act. 4.2) and fishing effort patterns estimated from VMS data 

(module EFFORT, Act. 4.5).  

The Getis Index was applied to the results of SDMs and used to identify the hot-spots 

for juveniles and adults of each species in the period 2008-2018 in the Adriatic-Ionian 

basin. The ensemble of SDMs allowed identifying also areas of overlapping hot-spots 

among species that, when occurring, were also located. Results point out that 

environmental covariates improve representation of the past data, and permit to 

project possible effects of future climate change scenarios. Results allow to 

preliminary identify areas for possible management measures that will be tested in 

other activities of the Interreg IT-HR Project FAIRSEA. 
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The Project FAIRSEA  
The FAIRSEA is a European Territory Cooperation project financed under the priority 

1 “Blue innovation”, Specific Objective 1.1 “Enhance the framework conditions for 

innovation in the relevant sectors of the blue economy within the cooperation area” 

of the INTERREG V-A Italy–Croatia Programme 2014-2020. The project focuses on 

the fisheries sector, key driver for the blue growth of the Adriatic communities, 

towards a sustainable co-management of resources and marine ecosystem 

protection. The transboundary nature of marine resources requires a cross-border 

cooperation and a shared “Vision” to properly tackle and address the different socio-

economic and environmental challenges related to fisheries activities management. 

In this context, FAIRSEA Project aims at enhancing transnational capacity and 

cooperation in order to promote the sharing of knowledge and good practices 

between regional and transnational key actors in the sector of sustainable fisheries 

management in the Adriatic Sea as well as to implement innovative approaches 

adopting an ecosystem approach to fisheries (EAF). 

Coordinated by the OGS of Trieste (IT), the project involves a consortium of 12 

strategic and operational partners from Italy and Croatia that will make to best use 

of their complementary expertise to address and support the application of the EAF 

ensuring a strong and interactive engagement of institutional, technical and socio-

economic stakeholder in project activities. 

The main result of the FAIRSEA Project will be the development of an integrated 

platform for a quantitative ecosystem approach to fisheries that goes across 

territorial boundaries and across several disciplines. The platform will integrate 

biological/ecological processes (i.e. considering water mass circulation, physical-

chemical properties, plankton productivity, dynamics of resources including their 

interactions) and fisheries bio-economic dynamics (including fisheries 

displacement). This high technological and innovative platform will be used as a 

planning tool to implement demonstrative testing of applicable fisheries policies both 

at local (subareas) and Adriatic scales. It will provide scientific basis for formulating 

and evaluating the shared management advice in the local and international 

participatory processes, involving management authorities, experts and 
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stakeholders. The Project will also provide an answer to the need of reference points, 

best practices and guidelines for the optimisation between ecological and socio-

economical sustainability of fisheries in the Adriatic Sea. 

 

1. INTRODUCTION 

Marine fish and invertebrates that live and feed close to the marine seabed, i.e., the 

demersal species, play a fundamental role in fisheries in the Adriatic and Ionian Sea 

(FAO, 2018). In order to ensure the sustainability of exploitation, a set of fisheries 

management measures and restrictions are adopted also considering scientific 

information on the status of resources. Clearly, management actions are particularly 

relevant and impacting in areas where demersal resources play a central role in local 

fishing communities and economies, such as the Adriatic and Ionian seas. Therefore, 

it is of paramount importance to increase accuracy of scientific information used to 

inform management. 

Scientific bottom trawl surveys provide quantification of abundance and biomass 

(hereafter termed indices) by species as fully described in module BSTAT (Activity 

4.3 BSTAT of the WP4). These fishery-independent data are used for manifold 

purposes related to management: stock assessment (e.g., Cotter et al., 2009), 

evaluation of spatio-temporal distribution of demersal resources (e.g., Carlucci et al., 

2009), estimates of population and community densities (e.g., Spedicato et al., 

2019b), and the development of ecosystem models (e.g., Gruss et al., 2018; Moullec et 

al., 2019). Sampling protocols of multiannual surveys are usually standardized for 

sampling design, gear geometry, sampling season, sampling locations to allow 

comparability of the trawl survey data across space and time. However, unavoidable 

small deviances (e.g., sampling period) or changes (e.g., vessel) during sampling may 

affect the abundance and biomass indices obtained from trawl surveys.  

The analysis would like to test the potential benefits on integrating oceanographic 

variables from module HYDRO (Act. 4.1), BGC (Act. 4.2) and effort variables from 

module EFFORT (Act. 4.5) in addition to spatiotemporal covariates (latitude, 
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longitude, depth, year and month) to improve species distribution models based on 

trawl survey data.   

Generalized Additive Models (GAMs), and machine learning models (MLMs), Random 

forest (RF, Breiman L., 2001) and Gradient Boosting machine, (GBM, Schapire R.E., 

2003) were chosen for their wide application and suitability with trawl survey data 

(Gruss et al, 2014, Lauria et al. 2017; Tserpes et al., 2019). GAMs and MLMs allow to 

predict species abundance and biomass over the domain (Maunder and Punt, 2004; 

Rubec et al., 2016; Potts and Rose, 2018, Luan J. et al., 2018) and provide estimates 

useful for tuning stock assessment models (Orio et al., 2017; Cao et al., 2017). 

Furthermore, GAMs and MLMs are deemed appropriate for mapping species 

distribution that is useful in ecosystem models (Fulton et al., 2011; Gruss et al., 2014, 

Luan et al., 2018), or for identifying Essential Fish Habitats (Druon et al., 2015).  

In addition to monitoring deviances, environmental changes and anthropogenic 

stressors may cause life-history responses, and their impacts on survey estimates are 

difficult to disentangle. Satellite data are successfully used to provide environmental 

variables (e.g. sea surface temperature; sea surface chlorophyll concentration) to be 

included in models to describe the spatial distribution of some pelagic species 

(Giannoulaki et al., 2008; Schismenou et al., 2017). However, these variables might be 

insufficient to model the distribution of demersal species, which may require 

additional oceanographic variables close to seabed such as those provided by the 

Copernicus Marine Environment Monitoring Service (CMEMS). The relative high 

number and the quality of the CMEMS products, as well as their high temporal 

coverage and spatial resolution, provide biogeochemical and physical oceanographic 

variables that can be useful to improve the analysis of abundance and biomass indices 

derived from trawl surveys (e.g., Sion et al., 2019; Tserpes et al., 2019). 

In addition, the displacement of fishing fleets derived from satellite-based tracking 

devices, such as Vessel Monitoring System (VMS) and/or Automatic Identification 

System (AIS), is a valuable source of information on the distribution and spatial 

aggregation of marine resources (Russo et al., 2018; Bastardie et al., 2014). The yearly 
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distribution of fisheries, in fact, represents a good track of the distribution of the 

targeted resource rather than a measure of the direct impact on it (which is a much 

longer term effect). Thus increasing accuracy of distribution of the species might be 

gained embedding fishing effort among the explanatory variables. 

2. Objectives of the First analysis of layers of information 

Analysis of the outputs of HYDRO, BGC, FSTAT, BSTAT, and EFFORT for defining a 

region of overlap, possible areas of management, comparison with areas of 

competence of regional authorities is performed. 

The information resulting from modules of the WP4 and embedded in the Integrated 

platform were used in an interdisciplinary and integrative quantitative analysis with 

the objectives to provide supportive science-based evidences useful for fisheries 

management.  

The integrated approach useful to fisheries management presented here is obtained 

by combining trawl survey data from BSTAT module, relevant physical ad 

biogeochemical oceanographic variables from modules HYDRO and BGC, 

respectively. Moreover, fishing effort estimates were considered as a result of the 

module EFFORT of the integrated platform. Biomass indices of demersal fish from 

scientific trawl surveys carried out in the Adriatic Sea and in the Western Ionian Sea 

(Adriatic-Ionian macro-region, EUSAIR, 2014) are analysed with a set of approaches 

using as explanatory variables the relevant biogeochemical and physical variables 

from CMEMS products and the distribution of fishing effort from VMS/AIS data. The 

objective of the study is to contrast models with spatiotemporal variables only and 

with different sets of additional explanatory variables in order to explore the 

improvement on estimates of demersal species distribution when environmental 

variables and effort are included into species distribution models. 
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3. Layers of information uploaded in the Integrated platform 

 

3.1 The FAIRSEA Integrated Platform structure and software 
 

The software development of the IP is being entrusted to the external software 

development company INKODE (https://inkode.it/). 

FAIRSEA IP is a web-GIS application based on open source software. All services are 

deployed by Docker containers, main services are: 

- Backend: based REST API developed in Python with on Django, Django Rest 

Framework and GeoDjango 

- Frontend: a Single Page Application based on AngularJS with Angular Material 

framework 

- Database: PostgreSQL with PostGIS 

- GIS software: Geoserver 

- Charts and dashboards: Plotly and Grafana 

Other used libraries and services: GDAL, scipy, Shapely, netCDF4, Pandas, MapProxy, 

Pillow 

Alpha/testing version of the IP running at http://fairsea.caspar.inkode.it:8887/. 

View only testing credentials: username “viewer”, password “fairsea2020”. 

 

3.2 Modules details 

 

In Table 1 each individual module and sub-module of the Integrated Platform will be 

briefly described. All layers uploaded in the platform can be visualized and 

downloaded in the form of NetCDF, shapefile or zipped folders according to the 

module of interest. 

  

https://inkode.it/
https://www.docker.com/
https://www.python.org/
https://www.djangoproject.com/
https://www.django-rest-framework.org/
https://www.django-rest-framework.org/
https://docs.djangoproject.com/en/3.1/ref/contrib/gis/
https://angular.io/
https://material.angularjs.org/1.1.26/
https://www.postgresql.org/
https://postgis.net/
http://geoserver.org/
https://plotly.com/
https://grafana.com/
https://gdal.org/
https://www.scipy.org/
https://pypi.org/project/Shapely/
https://unidata.github.io/netcdf4-python/netCDF4/index.html
https://pandas.pydata.org/
https://mapproxy.org/
https://pillow.readthedocs.io/en/stable/
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Modules (Sub-modules) 
name 

Modules description 
Characteristics within 

Integrated platform 

4.1 HYDRO – Hydrodynamic 
circulation and connectivity 

- Connectivity and main 

circulation patterns in the 

Adriatic Sea 

- Scenario analysis of future 

circulation 

Results on the space-time 
distribution of temperature, 
salinity and current velocity at 
different vertical layers for the 
past 20 years and in the 21st 
century under emission 
scenarios RCP4.5 and RCP8.5 

The physical variables can be 
mapped through different layers 
that can be activated or not 
thanks to an interactive legend. 
Through a drop-down menu the 
user can choose to view different 
vertical (depth) and temporal 
(seasons) levels (Fig. 1). 

4.2 BGC – Biogeochemical 
processes and dynamics 

- Production patterns in the 

Adriatic Sea 

- Future scenarios of 

production patterns 

Results on the space-time 
distribution of nitrogen, 
chlorophyll, primary 
production, plankton biomass 
and oxygen indicators for the 
past 20 years and in the 21st 
century under emission 
scenarios RCP4.5 and RCP8.5 

The biogeochemical variables can 
be mapped through different 
layers that can be activated or not 
thanks to an interactive legend. 
Through a drop-down menu the 
user can choose to view different 
vertical (depth) and temporal 
(seasons) levels. 

4.3 BSTAT – Spatial 

distribution of marine 

resources  

- GSA17 

- GSA18 

- GSA19 

Results of the application of 
spatio-temporal analyses, 
through BioIndex and 
BioStand routine 
(https://www.coispa.it), to 
fishery independent survey 
(MEDITS, SOLEMON) data of 
GSA17, GSA18 and GSA19 for 
the time series 1994-2018. 

Plots and data table from BSTAT 
are divided in Bioindex and 
BioStand folder. Moreover, spatial 
distribution of interesting species 
in the GSA17 can be mapped 
through different layers. 

https://www.coispa.it/
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Modules (Sub-modules) 
name 

Modules description 
Characteristics within 

Integrated platform 

4.4 FSTAT – Fisheries 
production and capacity 

Information from time series 
of catches (i.e. landings and 
discards), fleet consistency 
and economic data (e.g. costs, 
revenues) by fleet segment. 

Within the platform the outputs 
can be visualized through an 
interactive dashboard. Through a 
filter menu the user can choose to 
view different years, GSAs, 
species, fleet segment levels (Fig. 
2). 

4.5 EFFORT – Effort 
distribution and fleet 
displacement 

Results of assessment of the 
fishing effort distribution for 
both fishing vessels equipped 
with tracking devices (i.e. VMS 
or AIS) and non-equipped 
vessels (typically the fishing 
vessel smaller than 12 m) 

Within the platform the outputs 
by gears and LOA can be mapped 
through different layers that can 
be activated or not thanks to an 
interactive legend. Through a 
drop-down menu the user can 
choose to view different years. 

Summary Module Interaction workspace 
between module layers. 

The workspace gives the user the 
possibility of simple calculations 
on different layers on a 
regional/county basis (average, 
sum, min and max value) (Fig. 3). 

Table 1  Description of modules in the integrated platform 
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Fig. 1 - HYDRO output layout for “Connectivity and main circulation patterns in the Adriatic Sea” 

within FAIRSEA IP. This example displays the annual average of temperature values (T) in the 

project study area at 0-50 m depth (0m-50m). 

 

Fig. 2 - Overview of FSTAT interactive dashboard output within FAIRSEA IP. This example displays 

the landings in tons and Euro of anchovies and sardines (ANE and PIL). 
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Fig. 3 - Interaction workspace between module layers in the IP. This example displays the spatial 

distribution and summary calculation on Eledone moschata from MEDITS survey and the fishing 

effort of bottom trawler in the Marche region waters.  

4. MATERIALS 

4.1 Study area 

The study area is the Adriatic Sea and a part of the Ionian Sea, corresponding to the 

Geographic Sub Areas (GSA) 17, 18 and 19, as defined by the FAO-GFCM (General 

Fisheries Commission for the Mediterranean Sea). We used the bathymetry range 

from 10 m to 800 m, depth range of MEDITS survey, and from 10 m to 100 m for 
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SOLEMON survey, and the latitude and longitude range for the mapping of the species 

is included between 12’.00’’ E and 20’.00’’ E for longitude and 39.5’.00’’ N and 46’.00’’ 

N for latitude (Fig. 4).    

 

 
Fig. 4: Haul position (from 2008-2018) for the two surveys in Adriatic-Ionian Sea, MEDITS left panel 

and SOLEMON right panel. 

 

The central part of the Adriatic basin is characterized by a meso-Adriatic depression, 

called Pomo pit, reached 260 m, involved in some restricted fisheries 

recommendation. The southern part of the basin (GSA 18) is characterized by a steep 

continental slope to deepest bathymetry at 1250 m and its circulation is 

characterized by a cyclonic gyre. The dynamics of the Southern Adriatic and Ionian 

Sea are linked through the Bimodal Oscillating System (BiOS) mechanism (Civitarese, 

et al. 2010).  
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4.2 Inputs from BSTAT (Activity 4.3) 

We used data from the bottom trawl surveys conducted in the Adriatic Sea and North 

Western Ionian Sea, i.e., in the geographical sub-areas (GSAs) 17, 18, and 19. MEDITS 

(Mediterranean International Trawl Survey; Spedicato et al., 2019a) data that 

consists on average 326 sampling sites per year in the three GSAs and SOLEMON (Sole 

Monitoring; Scarcella G., 2011, Grati et al., 2013), that consists on average 70 

sampling sites per year in GSA 17 (see D4.3.1 “Spatio-temporal distribution of marine 

species”). We considered only the data from 2008 to 2018 (instead of the entire time 

series 1994-2018 MEDITS and 2005-2018 SOLEMON) due to the employment of the 

effort data (see following section). 

Indices of demersal species density (n/km2, n=number of individual ) were retrieved 

from the MEDITS dataset for European hake (Merluccius merluccius, bony fish), red 

mullet (Mullus barbatus, bony fish) and Norway lobster (Neprhos norvegicus, 

crustacean) and from the SOLEMON dataset for common sole (Solea solea, bony fish), 

mantis shrimp (Squilla mantis, crustacean) and common cuttlefish (Sepia officinalis, 

mollusc). We divided the species in adult and juvenile by using a specific threshold in 

length based on biological information.  

For each species, we fit indices of individuals km-2 by sampling site, set as a response 

variable in a set of species distribution models (SDM) developed on the basis of 

different approaches. 

 

4.4 Inputs from HYDRO and BGC modules (Activities 4.1 and 4.2) 

Among oceanographic variables available from modules HYDRO and BGC relevant 

oceanographic variables for the period 1999-2018 were considered based on known 

ecological importance for chosen demersal species (Carlucci et al., 2018; Bitetto et al., 

2019) as well as proxies for productivity and favourable environments. The relevant 

oceanographic variables considered were the water temperature (C°) and dissolved 

oxygen (mmol m-3) at the sea bottom and surface, water column averages of nitrate 

and phosphate concentration (mmol/m3), chlorophyll-a (mg m-3), particulate organic 

carbon (mg m-3), pH at the sea bottom, and surface salinity.  
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4.5 Inputs from EFFORT module (Activity 4.5) 

We used effort data expressed as trawling time (kw hours-1) per year at the spatial 

resolution of 1/16° taken from the module EFFORT (D4.5.1 Fishing effort map 

distribution). These data are estimated from VMS data for the period 2008-2018 (see 

also Russo et al., 2014a). Total effort data from single bottom otter trawl (OTB) and 

beam trawls (TBB) applied to species on the basis of the target of fisheries. The effort 

is based on data from VMS for fleets belonging to both Italy and Croatia (D4.5.1 

Fishing effort map distribution).  

 

5. Integrating layers using Species Distribution Models (SDM) 
A few different approaches were used to implement SDMs: Generalized Additive 

Models (GAM), Random forest model (RF) and gradient boosted machine (GBM). In 

the case of GAM, we applied different distribution families to demonstrate the 

potential benefits of using additional variables disregarding the model structure. 

GAMs were developed using Gaussian probability distributions with identity link on 

trawl survey density data log-transformed for all species. GAMs were also applied 

using Tweedie probability distributions with a lognormal link on untransformed 

density indices. Furthermore, the Delta-GAM approach was implemented in two 

steps: i) a binomial occurrence model was used to fit presence/absence data 

(binomial family error distribution logit link function), ii) a Gaussian distribution 

model with identity link function on transformed density for presence-only data 

(Gruss et al, 2014, Lauria et al. 2017). For Delta-GAM the final spatial distribution of 

species biomass as n/km2 is obtained by multiplication of Gaussian and Binomial 

models’ predictions to the grid of the model’s domain (Gruss et al., 2014, Lauria et al. 

2017). About random forest model, we applied 5000 trees on data log-transformed 

for all species, with a minimum number of variables for each split equal to 1/3 of the 

explained variable (R package randomForest, Breiman L., 2018). Finally, for the GBM 

model, we applied 10000 trees with shrinkage of 0.01 (gbm package R, 

https://github.com/gbm-developers/gbm). 
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A grid of regular points with the same resolution of the selected CMEMS product 

(1/16°) and covering the study area was created to predict species density 

distribution by the selected models (Spedicato et al., 2019b; Tserpes et al., 2019).  

In the SDMs, the explanatory variables tested were the geoposition variables (latitude 

and longitude of the haul survey expressed in decimal degrees) as well as additional 

oceanographic and fishing effort variables. Among the geoposition variables we used 

geographic coordinates, depth (m), and year of the observations.  

The explanatory variables were preliminarily selected using the VIF approach 

(Variance Inflation Factor; Sheather, 2009) with a threshold of VIF < 5 to avoid 

collinearity (see also Orio et al., 2017; Sion et al., 2019). 

The results of the VIF analysis identified for all the species, year, depth, latitude, 

longitude, to be included as explanatory variables and constituted the minimal 

spatiotemporal model (ST). Furthermore, the VIF analysis by species allowed to 

include additional explanatory variables without collinearity extracted from HYDRO 

and BGC reanalysis and fishing effort: the VIF results showed to be species-specific.  

 

5.1 Stepwise approach, training and testing of SDM 

For each species and all approaches (Delta, Gaussian, Tweedie, RF, and GBM), a 

forward-stepwise approach was used. This started from the simplest model given by 

the minimal spatiotemporal explanatory variables (model A, with latitude, longitude, 

depth, and year) to combine it with all the most meaningful additional 

biogeochemical, physical, and fishing effort variables (from model B to I), identified 

by VIF analysis. Then the forward–stepwise approach consisted of increasing the 

number of explanatory variables by successively adding those with high F statistics 

till the model with full explanatory variables was obtained. Thus, the forward-

stepwise approach resulted in a set of models having different explanatory variables 

to obtain the response variable (R = log (ind km-2) or presence/absence). Each model 

was subjected to a calibration-validation process, thus it was fitted on a spatial 

training dataset made by randomly choosing 70% of the data used for training the 

model (calibration) and assessing the fitting model on the remaining 30% of records 

(testing). The training and testing were repeated using 5 spatially fold (fig. 5) on 
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datasets randomly selected and without replacement, using the BlockCV package 

(Valavi et al., 2019). The best model was selected based on measures of the model’s 

performance such as explained deviance (%ED) and prediction errors (AIC, Akaike 

Information Criterion) of the training datasets; correlation coefficient (R2) and mean 

absolute error (MAE) of the model predictions on the testing dataset.  

 
Fig. 5. Spatial identification of blocks used for testing and training the models. Example of Hake 

(MERL_MER MEDITS code, Merluccius merluccius) and spatial blocks used for training and testing 

the model (from package BlockCV R). Left panel: subdivision of the study area in blocks for 5 fold. 

Central panel: test blocks for fold 1, Right panel: training plot for the remaining fold: 2,3,4,5.  

 

5.1 Stepwise approach, training and testing of SDM 

Furthermore, the validation process includes an application of the best model for 

each approach and species on the sampled data (MEDITS and SOLEMON) and 

evaluation of MAE and R2 (Tables 2,3,4,5).  Indicators of performances for the models 

applied to European hake, red mullet and Norway lobster using MEDITS trawl survey 

data are reported for adults and juveniles in Tables 2 and 3 respectively. Indicators 

of performances for the models applied on data from SOLEMON trawl survey data are 

reported for adults and juveniles in Tables 4 and 5 respectively.   
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metrics model ST ST+Env ST ST+Env 

  Hake (adults)  Red mullet (adults)  

AIC Delta 2495,45/5795,46 2304,69/5721,45 2258,71/5785,93 2117,566/5721 

 Gaus 15207.98 14824.69 17077.54 16643.26 

 TW 32836.43 32453.31 32553.71 32170.56 

 RF X X X X 

 GBM X X X X 

Dev. Expl. Delta 54.00% 57.00% 53.60% 55.75 

 Gaus 60.60% 64.60% 59.90% 64.60% 

 TW 50.30% 55.80% 61.30% 67.00% 

 RF 81.00% 82.7% 81.35% 82.91% 

 GBM 61.00% 66.55% 62.00% 68.00% 

MAE Delta 117.53 112.5 601.19 585.67 

 Gaus 163.84 158.06 860.68 793.72 

 TW 145.14 135.53 872.23 785.56 

 RF 86.43 59.88 509.41 371.17 

 GBM 153.16 142.91 849.46 732.92 

                                  Norway lobster (adults)   

AIC Delta 2196,49/1857,65 2093,53/1831,79   

 Gaus 12762.13 12560   

 TW 10695.5 10614.76   

 RF X X   

 GBM X X   
Dev. Expl. Delta 33.10% 36.80%   

 Gaus 36,9%% 40.80%   

 TW 56.20% 60.40%   

 RF 57.26% 59.00%   

 GBM 43.00% 47.00%   
MAE Delta 17.58 17.21   

 Gaus 17.46 17.19   

 TW 20.08 19.34   

 RF 13.4 11.06   

 GBM 16.84 16.64     

Table 2. Training results for different models and evaluated using different indicators for adults of 

MEDITS species, i.e., European hake, Norway lobster and red mullet.   
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metrics model ST ST+Env ST ST+Env 

  Hake (juveniles)  Red mullet (juveniles) 

AIC Delta 1351,755/5315,19 1197,23/5248,15 728,35/1903,25 649,83/1869,85 

 Gaus 13215.79 12968.01 10241.99 9565.45 

 TW 27137.62 27019.39 10455.56 10169.61 

 RF X X X X 

 GBM X X X X 

Dev. Expl. Delta 57.00% 60.80% 62.00% 65.95% 

 Gaus 65.60% 68.30% 56.70% 67.40% 

 TW 63.20% 65.00% 79.20% 86.70% 

 RF 84.60% 86.71% 83.06% 86.16% 

 GBM 67.00% 72.00% 60.00% 70.00% 

MAE Delta 255.32 251.68 808.23 780.57 

 Gaus 304.57 292.36 842.89 825.81 

 TW 296.67 288.09 1388.89 920.35 

 RF 206.73 148.68 724.85 623.08 

 GBM 284.39 276.37 844.92 822.69 

                                  Norway lobster (juveniles)   

AIC Delta 830,36/577,82 794,69/569,95   

 Gaus 7930.14 7898.12   

 TW 5306.69 5283.87   

 RF 
  

  

 GBM 
  

  
Dev. Expl. Delta 38.90% 42.45%   

 Gaus 28.40% 29.10%   

 TW 69.00% 72.40%   

 RF 54.86% 56.15%   

 GBM 40.87% 44.62%   
MAE Delta 4.15 4.03   

 Gaus 4.82 4.82   

 TW 4.69 4.48   

 RF 3.87 3.45   

 GBM 16.84 16.64     

Table 3. Training results for different models and evaluated using different indicators for juveniles 

of MEDITS species, i.e.,  European hake, Norway lobster and red mullet. 
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metrics model ST ST+Env ST ST+Env 

  Sole (adults)  Mantis shrimp  (adults) 

AIC Delta 271,16/1678,51 270,35/1729,55 322,89/1102,94 366,59/1164,44 

 Gaus 2621.06 2654.59 2677.54 2706.25 

 TW 9760.86 9764.04 5921.28 5945.32 

 RF X X X X 

 GBM X X X X 

Dev. Expl. Delta 60.95% 56.40% 58.60% 47.75% 

 Gaus 65,7%% 63.80% 66.60% 66.00% 

 TW 61.20% 60.50% 64.30% 63.20% 

 RF 70.60% 71.55% 72.93% 71.08% 

 GBM 74.00% 77%% 75.00% 64.00% 

MAE Delta 289.76 300.2 258.4 297.26 

 Gaus 322.89 324.41 301.3 309.66 

 TW 305.91 306.42 276.6 279.94 

 RF 185.69 154.21 197.23 157.61 

 GBM 279.7 286.51 275.23 335.52 

                                  Cuttlefish (adults)   

AIC Delta 451,37/1078,10 458,17/1086,47   

 Gaus 2583.97 2632.71   

 TW 6040.15 6074.89   

 RF X X   

 GBM X X   
Dev. Expl. Delta 51.80% 49.75%   

 Gaus 68.90% 66.70%   

 TW 62.00% 58.80%   

 RF 66.72% 66.63%   

 GBM 76.00% 64.00%   
MAE Delta 86.55 92.98   

 Gaus 98.38 108.43   

 TW 91.82 98.16   

 RF 61.51 59.59   

 GBM 87.49 100.85     

Table 4. Training results for different models and evaluated using different indicators for adults of 

SOLEMON species, i.e.,  common sole, common cuttlefish and mantis shrimp. 
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metrics model ST ST+Env ST ST+Env 

  Common sole (juveniles) Mantis shrimp (juveniles) 

AIC Delta 101,73/884,01 84,87/924,05 367,27/1246,39 373,04/1266,24 

 Gaus 1284.04 1301.69 2767.26 2802.75 

 TW 4394.93 4390.81 6350.31 6327.68 

 RF X X X X 

 GBM X X X X 

Dev. Expl. Delta 76,05%% 72.15% 58.50% 56.20% 

 Gaus 81,8%% 79.30% 66,7%% 65.40% 

 TW 72,1%% 72.10% 64,1%% 66.40% 

 RF 78%% 79.60% 73.20% 64.70% 

 GBM 87.00% 90.00% 75.00% 61.00% 

MAE Delta 531.4 591.64 312.35 330.03 

 Gaus 580.29 571.53 336.09 358.6 

 TW 570.6 550.43 328.36 309.6 

 RF 435.25 346.01 230.86 228.9 

 GBM 465.59 430.3 319.53 398.43 

                                  Cuttlefish (juveniles)   

AIC Delta 466,35/961,62 454,58/993,49   

 Gaus 2484.36 2539.68   

 TW 5556.38 5599.83   

 RF X X   

 GBM X X   
Dev. Expl. Delta 56.95% 56.75%   

 Gaus 67.40% 64.40%   

 TW 66.30% 64.00%   

 RF 66.20% 65.22   

 GBM 73.00% 78.00%   
MAE Delta 110.01 115.52   

 Gaus 116.05 126.66   

 TW 113.63 123.97   

 RF 81.62 78.14   

 GBM 110.11 105.16     

Table 5. Training results for different models and evaluated using different indicators for juveniles 

of SOLEMON species, i.e.,  common sole, common cuttlefish and mantis shrimp.  
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5.2 Predicted errors 

Using the SDM ensemble the predicted values were calculated on a grid of regular 

points (with the same resolution of the selected CMEMS product 1/16°) covering the 

study area are compared with the data surveys. The model error was calculated as:  

 

Erri= (
|𝑦𝑖−𝑥𝑖|

𝑥𝑖
 ) ∗ 100          Eq. (1) 

 

where 𝑦𝑖  is the model predicted value on the grid and 𝑥𝑖  is the survey data value, for 

each haul (i) of the survey. The spatial distribution of the model error is mapped by 

triangular irregular network (TIN) interpolation (REF) algorithm in R. This method 

is useful to predict values for unmeasured location and TIN utilizes the points to 

constitute many non-overlapping triangles that cover the entire region according to 

a set of rules. The ground surface is described approximately with triangles (Advance 

Remote Sensing, 2020). Furthermore, a mean percentage error for each year, for 

ensemble model and each species, was calculated as:  

∑ ((
|𝑦𝑖−𝑥𝑖|

𝑥𝑖
 )∗100)𝑛

𝑗=1

𝑛𝑗
          Eq. (2) 

Results as presented in Fig. 6 for model ensemble and for adults and juveniles of each 

species highlight the generally better performances of SDM models with 

spatiotemporal and including additional environmental and effort variables, i.e., the 

integrated model better perform in describing the data available. 
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Fig. 6.  Annual error (average and SD) for weighted ensemble model for the 6 species. Legend: ST, 

spatiotemporal, ST + Env, spatiotemporal + environmental variables and effort. 
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Adult Juvenile 

Species ST ST+Env   ST ST+Env 

Hake 0.59 0.65   0.54 0.58 

Red mullet 0.14 0.22   0.32 0.4 

N. lobster 0.43 0.48   0.32 0.36 

Cuttlefish 0.73 0.75   0.74 0.74 

Mantis shrimp 0.68 0.69   0.69 0.71 

Sole 0.70 0.67   0.60 0.65 

Table 6. Pearson correlation values between survey data and model prediction, for each species and 

size, for ST and ST+Env model.  

 

The average error of SDM ensemble with and without environmental and effort 

variables, as well as the correlation coefficient as represented in Table 6 for all species 

highlight a generally much better performance of integrated models in describing 

trawl survey data. 
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5.3 Identification of hot spots on results of SDM  

The best model for each species and each approach is used to obtain maps of the 

density distribution (ind km-2) for each year that allow identifying areas of high 

biomass density (hot-spots) in the GSAs 17, 18, and 19. To identify a hot spot area we 

used Getis index (Getis A. & Ord J.K, 1992) that calculate areas of aggregation by 

comparing statistically the average of a group of cells with average of the model 

domain abundances. The number of cells used was equal to 8 (after several tests).  

 
Fig. 7: Results of the Getis index applied at the weighted ensemble model for European hake, 

Norway lobster and Red Mullet based on data from MEDITS survey. Each panel shows spatial-

temporal model (ST) and spatial-temporal + environmental model (ST+Env) for adult (left) and 

juvenile (right).  
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In order to account of the different performances among models in representing the 

data, the weighted average of the 5 approaches was used as ensemble weighted mean. 

The weights used were the R2 obtained in the validation process. The weighted 

averages of the Getis index were obtained both using the spatiotemporal variables 

only, and including also relevant oceanographic and effort variables (ST and ST+Env, 

respectively). The resulting hot spots for both adults and juveniles are reported in 

Figure 7 (European hake, Norway lobster and red mullet) and Figure 8 (common sole, 

common cuttlefish and mantis shrimp). 

 
Fig. 8: Results of the Getis index applied at the weighted ensemble model for common sole, common 

cuttlefish and mantis shrimp derived from SOLEMON survey data by species. Each panel shows 

spatial-temporal model (ST) and spatial-temporal + environmental model (ST+Env) for adult (left) 

and juvenile (right).  
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Figures 7 and 8 show that although the identification of hot spots seems robust to the 

inclusion or not of the environmental and effort variables, the most integrated model 

is not only better (Figure 6) but it is also highlighting more granularity and gradients 

in the species distribution. Some differences in the identification of hot spots occur 

when including or not environmental variables (from HYDRO e BGC) and effort (from 

module EFFORT) that might be relevant for management purposes. 

Notably hot spots are clearly specific for each species and are coherent with available 

information and previous scientific achievements. 

6. Using results for management insights: matching hot spots 
Hot spots by species, located as presented in figures 7 and 8, represent potential areas 

for spatial fisheries management. However, in the context of mixed fisheries as that 

of the Adriatic, might be useful to restrict and focus the potential areas of intervention 

to areas favourable for aggregation of more than one species. Matching the hot spots 

obtained from the ensemble of models, therefore, might represent a very useful 

approach to identify most relevant ecological areas for management.  

A preliminary analysis on the hot spots identified by Getis index in order to identify 

areas where 2 or more species aggregates. This was done both for juveniles and 

adults. 

Getis values for the threshold of 75 percentiles were filtered for each species and the 

matching grid cells for two or more species were identified, with or without 

environmental variable (ST+env and ST respectively). This approach applied for both 

adults and juveniles resulted I Figures 9 ad 10, respectively.  

Different colours among overlapping areas help to disentangle the overlapping 

species. Red area includes shared hot spots for European hake and Norway lobster. 

Violet area for European hake and red mullet, and light green area for red mullet and 

Norway lobster. These areas are more common in the southern part of the basin. 

Similarly, in yellow was represented the shared hot spot area between cuttlefish and 

common sole, light grey area between common sole and mantis shrimp, and dark grey 

area between cuttlefish and mantis shrimp. The hot spots areas for these species 

concentrate in the northern part of the basin. 
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It appears that there are areas where three species overlap their hot spots, ad these 

are visible for adults in the area close to the Pomo Pit.  

 

 

  

Fig. 9: Representation of matching area (from Getis analysis, >=75%) among hot spots for adults of 

the analysed species. The approach is applied for ensemble of both model ST and ST+ env. The 

colours are:  red area includes shared grid cells for European Hake and Norway lobster. Violet area 

for European hake and red mullet, and light green area for red mullet and Norway lobster. About 

SOLEMON species we have: yellow is a shared area between cuttlefish and common sole, light grey 

area between common sole and mantis shrimp, and finally, dark grey area between cuttlefish and 

mantis shrimp. Hot spots matching for adults of more than 2 species. 

 

ST + Env ST  
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Fig. 10: Representation of matching area (from Getis analysis, >=75%) among hot spots for juveniles 

of the analysed species. The approach is applied for ensemble of both model ST and ST+ env. The 

colours are:  red area includes shared grid cells for European Hake and Norway lobster. Violet area 

for European hake and red mullet, and light green area for red mullet and Norway lobster. About 

SOLEMON species we have: yellow is a shared area between cuttlefish and common sole, light grey 

area between common sole and mantis shrimp, and finally, dark grey area between cuttlefish and 

mantis shrimp. Hot spots matching for juveniles of more than 2 species. 

 

6.1 Capabilities and Limitations  

The approach is statistically sound and the application of ensemble of different 

models permit to consider the capabilities of each model in fitting the data, possibly 

resulting in a best overarching ensemble model.  

One important limitation of the approach relies on the definition of threshold 

between juveniles and adults. This threshold is based on the average length at first 

maturity but might be opportune to consider other options also based on local 

biological and fisheries knowledge. 

ST + Env ST  
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Furthermore, the significance of results strongly relies on the trawl survey data 

accuracy in representing the species abundance and distribution. More than the 

quality of trawl survey is the representation of one seasonal sampling moment that 

should worry: clearly the MEDITS is better representative of summer periods and 

SOLEMON of the November periods. This should be kept in mind when considering 

the results for juveniles and adults reported here as the match between sampling 

season and relevance of the season for biological cycle of each species should be 

considered. 
 

7 Final remarks 
A procedure was set for integrating at best the data from environmental variables 

from modules 4.1 HYDRO and 4.2 BGC, effort data from module 4.5 EFFORT and trawl 

survey independent fishery data available in 4.3 BSTAT. Such approach is statistically 

robust, obtained with a protocol for training and testing repetitively the several 

Species Distribution models. The resulting ensemble proved to be better in 

representing fishery independent data when embedding also environmental and 

effort variables. 

The approach is at the base of the identification of hot spots of aggregation for 

juveniles and adults of 6 important demersal target species: European hake 

(Merluccius merluccius, bony fish), red mullet (Mullus barbatus, bony fish) and 

Norway lobster (Neprhos norvegicus, crustacean), common sole (Solea solea, bony 

fish), mantis shrimp (Squilla mantis, crustacean) and common cuttlefish (Sepia 

officinalis, mollusc). 

The available layers of information integrated resulted in hot spots that are also 

overlapping. Overlapping areas among hot spots might be considered preferred areas 

for management as they can support the rebuilding and/or protect critical stages that 

might be identified in fisheries stock assessment. The located hot spots areas 

identified here are preliminary and anyway are of ECOLOGICAL significance. This 

does not necessarily means that these are areas to be managed. Further approaches 
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can be applied to simulate fisheries management in these areas for testing their 

appropriateness in terms of social, economic and ecological fisheries sustainability. 

 

7.1 Notes  

The work presented here is also part of the PhD of Diego Panzeri which is a PhD 

student of the XXXV cycle at Università degli Studi di Trieste, currently developing a 

PhD thesis in synergy with FAIRSEA activities. 
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