

Final pilot action report Ports of TRIESTE and MONFALCONE

LP, deliverable no. D.4.2.1

www.italy-croatia.eu/susport

DISCLAIMER

This document reflects the author's views; the Programme authorities are not liable for any use that may be made of the information contained therein.

EX-ANTE SITUATION

Over the past few years, the Port Network Authority of the Eastern Adriatic Sea (PNAEAS), following a logic of integrated development and considering current and future needs, has worked hard to identify both infrastructural and organisational-managerial solutions that favour a more efficient transport system. Actions and strategies have thus been adopted to strengthen both the ability to monitor and manage the complex of port operations in a sustainable manner. The importance of monitoring activities is therefore the foundation of the work to identify corrective and improvement solutions for environmental protection actions.

In the TNA analysis of WP3, in the chapter concerning the "SWOT ANALYSIS/ internal/negative" the "Impact of the port on air pollution and GHG" was identified. In particular, the CO2 emissions produced by the port activities of Trieste and Monfalcone are on both maritime and terrestrial sides. This demonstrates that the Port System of the Eastern Adriatic Sea is, by the very nature of the activities that take place in it, a complex area, in which activities pertaining to the industrial, civil and transport sectors coexist and interact, that entails the need for an integrated approach that takes into account current and future needs related to the different involved areas.

With reference to the CO2 reduction targets, this deliverable refers to the following components of the pilot action :

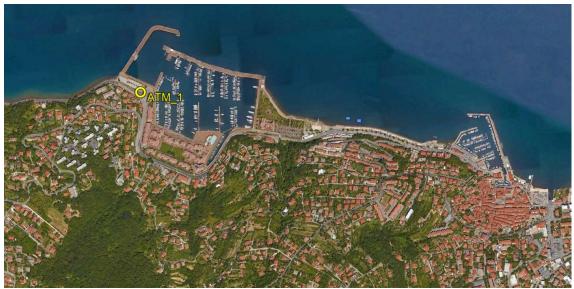
- 1) <u>EAS MONITORING</u> : Implementation of the Integrated Monitoring Plan in the framework of the Port Regulatory Plan for the Port of Trieste - ante operam
- 2) COLD IRONING OF THE QUAYS OF PIER VII IN THE PORT OF TRIESTE
- 3) <u>REPLACING OF THE LIGHTING SYSTEM WITH LED LIGHT BULBS</u>
- 4) <u>E-CARS</u>

Furthermore, the Best Practices Analysis (D.3.2.13) identified best practices that contributed to the implementation of all the following pilot actions, that were realized within SUSPORT by PNAEAS.

Pilot action no. 1 : EAS MONITORING

IMPLEMENTATION OF THE INTEGRATED MONITORING PLAN IN THE FRAMEWORK OF THE PORT REGULATORY PLAN FOR THE PORT OF TRIESTE - ante operam

1.1. Pilot action description


PNAEAS has prepared the launch of the Integrated Monitoring Plan (IMP) produced within the framework of the Integrated Environmental Study (SAI) of the 2014 Update of the Trieste Port Regulatory Plan (PRP), approved by the Autonomous Region of Friuli Venezia Giulia with Council Resolution no. 524 of 1st April 2016.

Environmental monitoring includes activities concerning the environmental components covered by the IMP (Atmosphere; Water Environment - Coastal Marine Waters and Marine Biocenosis; Terrestrial Fauna Environment; Noise; Landscape; Energy; Waste). PNAEAS implemented EAS ante operam monitoring of the environmental component 'atmosphere'.

Environmental monitoring was arranged through two seasonal measurement campaigns (a summer campaign and a winter campaign) lasting no less than 30 effective days each.

Air quality measurements were performed through the use of a moving laboratory placed at Porto San Rocco in Muggia (near Trieste), in addition to the stations belonging to the ARPA FVG (Regional Agency for Environmental Protection of Friuli Venezia Giulia) air quality monitoring network. At the same time, the data acquired by the ARPA FVG station network were collected for analysis and comparison. In particular, data recorded during the monitoring period were acquired from the stations in Piazza Volontari Giuliani, P.le Rosmini, P.le Carlo Alberto, Via Carpineto, Via del Ponticello and Via Pitacco, in addition to the weather data from the OSMER (Regional Meteorological Observatory) stations in Molo Fratelli Bandiera and Muggia.

Sampling point. Photo taken from Google Earth

The environmental indicators involved in the monitoring are essentially those related to the significant environmental impacts of sources such as: vehicle traffic, ship traffic, shipbuilding activities, paying attention to the area's meteo-climatic parameters, which are fundamental for the diffusion of the pollutants themselves. In particular, the parameters relating to the atmospheric component, that are indicators of air quality, analysed during this monitoring campaign were:

- Sulphur dioxide (SO2);
- Nitrogen dioxide (NO2);
- Carbon monoxide (CO);
- Ozone (O3);
- Benzene (C6H6);
- Benzo(a)pyrene (C20H12);
- Fine particles (PM10 and PM2.5).

The limits defined by Legislative Decree 155 of 13/08/2010 ('Implementation of Directive 2008/50/EC on ambient air quality and cleaner air for Europe, which identifies air quality limit values for pollutants in the atmosphere') were considered as reference values for the above-mentioned parameters.

POLLUTION	LIMIT	PERIOD OF AVERAGE	LIMIT	EXCEEDINGS / YEAR
	Human health	1 hour	350 μg/m³	24 / Calendar year

SO₂ (μg/m³)	Human health	1 day	125 μg/m³	3 / Calendar year
	Human health	1 hour	200 μg/m³	18 / Calendar year
NO₂ (µg/m³)	Human health	Calendar year	40 μg/m³	-
	Alert threshold	1 hour for 3 consecutive hours	400 μg/m³	-
CO (mg/m³)	Human health	Moving average 8 hours	10 mg/m ³	-
$O_{1}\left(ug/m^{3}\right)$	Human health	Moving average 8 hours	120 μg/m³	25 / Calendar year
O₃ (µg/m³)	Alert threshold	1 hour	240 μg/m³	-
С ₆ Н ₆ (µg/m³)	Human health	Calendar year	5 μg/m³	-
C ₂₀ H ₁₂ (µg/m ³)	Target value	Calendar year	1 ng/m ³	-
DN410 (Human health	1 day	50 μg/m³	35 / Calendar year
PM10 (μg/m³)	Human health	Calendar year	40 μg/m ³	-
PM2,5 (μg/m³)	Human health	Calendar year	25 μg/m³	-

Table 1: Limits for each monitored pollutant according to Legislative Decree 155/2010

Given the importance of meteorology on the dispersion of pollutants in the air, measurements of pollutants were recorded with data on wind speed and direction, temperature and relative air humidity, atmospheric pressure, solar radiation and precipitation in order to collect representative data.

EQUIPMENT

Analysers and samplers mounted inside the specifically prepared moving vehicle were used for the measurements; the instrumentation, listed below, complied with the standards prescribed by the regulations, in particular Ministerial Decree n.60 of 02/04/2002 (Transposition of Council Directive 1999/3 DICE of 22 April 1999). In fact, before starting monitoring, the correct functioning of the instruments was verified and the appropriate calibration checks were carried out with LAT certified cylinders.

EQUIPMENT – MOVING LABORATORY MOLO VI	
SEQUENTIAL GRAVIMETRIC SAMPLER FOR PM10 PARTICLES ON FILTER: Dadolab GIANO	S/N SQ112A120210059
AUTOMATIC SAMPLER FOR PARTICLES PM2.5 24H ON FILTRATING MEMBRANE: Envea MP101M	S/N 9512

AUTOMATIC NITROGEN OXIDE ANALYSER NOX: Envea AC32E	S/N 1405
AUTOMATIC SULPHUR DIOXIDE ANALYSER SO2: Envea AF22E	S/N 1564
AUTOMATIC CARBON MONOXIDE ANALYSER CO: Envea CO12E	S/N 1172
AUTOMATIC OZONE ANALYSER O3: Envea O342E	S/N 1087
AUTOMATIC BENZENE ANALYSER C6H6: Envea VOC72E	S/N 448

Table 2: List of equipment installed on the moving laboratory used for monitoring

Both the monitoring point and the way in which the moving laboratory was installed were checked and approved by ARPA FVG during the start-up phase of the measurement campaigns, during which compliance and proper functioning and calibration of the instrumentation were also checked.

Location of the moving laboratory at Porto San Rocco during the summer campaign

POLLUTION SOURCES

With regard to the atmospheric component, the possible 'pollution sources' can be numerous and highly variable. Industrial, commercial, but also domestic and vehicular activities contribute to determining and/or varying air quality.

In this case, since we do not have to assess and describe a single point, but have to describe and analyse air quality over a very large area, we can only define in a general way the aspects that could somehow positively or negatively affect the quality.

In the area closest to the monitoring point chosen at Porto San Rocco, the only activities that may have partly contributed to altering air quality can be restricted to vehicular movements that may have taken place at the nearby car park during the monitoring period, or the movements of motor boats.

RESULTS

The ante operam atmospheric monitoring, aimed at controlling the impact of diffuse emissions generated on the areas outside the future construction site, in the two seasonal campaigns carried out, made it possible to record the state of air quality by integrating the moving laboratory installed at Porto San Rocco in Muggia with the existing stations of the ARPA FVG monitoring network.

In general, this activity made it possible to verify that the state of air quality at the point chosen at Porto San Rocco is in line with that recorded by the ARPA FVG stations taken as reference. In fact, during both the summer and winter campaigns, values were recorded that were absolutely in line (if not even lower on some occasions).

Pilot action no. 2 : <u>COLD IRONING OF THE QUAYS OF PIER VII IN THE PORT</u> <u>OF TRIESTE</u>

2.1. Pilot action description

Cold Ironing is a particularly valid technological solution for the purpose of reducing emissions and pollutants generated in the port and contributes to the improvement of air quality, not only in the port areas directly affected by maritime operations, but also in the rear-port and urban ones. This is particularly true in the case of port nodes located close to city area.

Cold Ironing, in fact, was created above all to facilitate the abatement of pollutants in the port, allowing moored ships to turn off the auxiliary engines to connect to the electricity grid present on land. In this way, the loading/unloading operations of the ship can continue and all the services for passengers can be kept on board, despite the unit being moored with the engines off. This system takes the form of connecting the ship to the quay by means of a cable, comparable to an extension from the ground, in order to supply it with all the energy necessary to stop its engines and therefore to significantly improve the quality of the air in port.


The pilot action is part of a very broad context of initiatives promoted by the European Commission in the context of interventions aimed at ensuring "Clean Energy in Transport". Cold Ironing

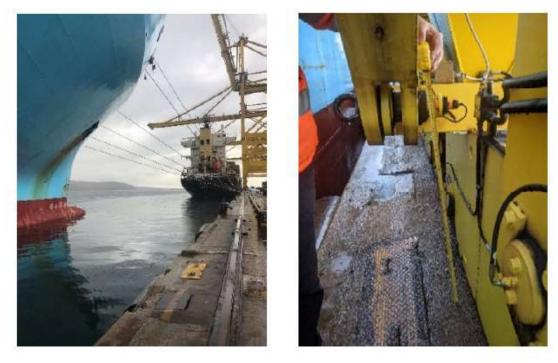
represents a very important intervention for the reduction of local emissions during the mooring of ships and is therefore particularly interesting for ports such as Trieste, which is an integral part of the urban context.

SPECIFIC CONTEXT ANALYSIS

The design concerns a Cold Ironing system to be dedicated to Pier VII of the Port of Trieste. The preliminary project drawn up by the Port Network Authority of the Eastern Adriatic Sea (PNAEAS) envisaged the realisation of three connection points along the south quay.

Pier VII – Port of Trieste

The docking ships are container-cargo ships and, as foreseen by the project, the cold ironing systems serving these ships must meet the specific regulatory standard IEC 80005-1 "Utility connections in port - Part 1: High voltage shore connection (HVSC) systems - General requirements".


GENERAL PROJECT FEATURES

The area for the realisation of the Cold Ironing system consists of a small portion of Pier VII of the Port of Trieste. In particular, it is the area close to the root and facing the south quay. The area is supported by a deck system, consisting of piers on which pre-stressed reinforced concrete plates rest and on which the foundation of the roadway for the handling vehicles is built,

having a thickness of 40 cm. Within this thickness are all the sub-services (cables, water network, etc.) as well as the foundations of the tracks for the railway wagons and the beams that support the two runways for the movement of the seven STS (Ship-to-Shore) cranes that cover the entire current length of the Pier (approx. 770m).

On the quay, where the connection systems for cold ironing are located, the space available is limited by the presence of the bollards and the ground anchoring systems of the STS cranes in cases of strong winds (tie-down systems).

Quay edge with slot for tie-down connection

Near the identified area there is an electrical cabin called Cabin A, connected to the port's 6.6kV inner ring and supplying power to some low voltage service stations and a 6.6kV quay crane. Around the cabin there is an internal road system for the circulation of the terminal operator's work vehicles, a system of tracks for the circulation of cargo wagons, several places for the container storage and the quay cranes travelling on rails parallel to the south quay.

The electrification of docks in existing ports is an intervention strongly conditioned: by the general lack of space; by the need to combine the operator's needs, both in terms of minimising operational limitations during implementation, and in terms of minimising impacts during normal terminal operation, once integration has taken place.

The project involves the electrification of a portion of the quay using a moving connection system. Considering a future development in which additional moving systems are added, it has been considered that, both due to contemporaneity factors seen so far for ships equipped with the HVSC

system, and due to limits of power available from the distributor, there will not be a demand exceeding two units of 7.5MVA each.

The planned cold ironing system will be powered by a 27.5kV line, which will be installed in a new electrical cabin named CEB1 and located approximately 35m to the right of the existing Cabin A. Inside the new cabin there will be space for the transformation and energy conversion equipment for adaptation to the voltage and frequency levels required by the standard IEC 80005-1 which, for the specific case of container ships, requires vessels to be powered at 6.6kV and 60Hz.

From the CEB1 cabin, a cable will be laid to reach the root of the Pier. Here will be positioned a technical room provided with the necessary equipment for the sectioning of the MT line and for the interconnection with the moving socket system.

Project scheme

The planned moving system will be of rail-type, with a moving capacity of up to 400m. The rail will be fixed to the on-board beam, will support the movable part of the system and will provide space for housing the power circuits of the system itself.

In the event of future extensions of the quay, which is planned to be extended in a westerly direction by approximately 100 m, on the basis of the pilot action implemented during SUSPORT, the use of a second moving system to cover the second half of the quay is envisaged in order to continue the process towards increasingly green and sustainable ports.

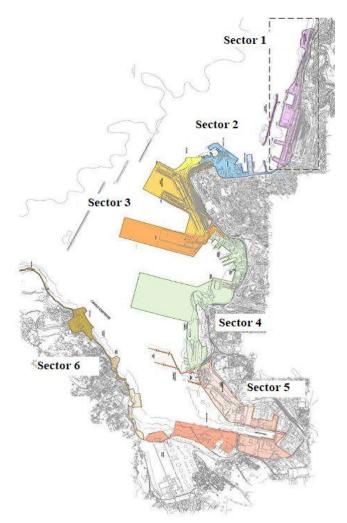
Pilot action no. 3 : <u>REPLACING OF THE LIGHTING SYSTEM WITH LED LIGHT</u> <u>BULBS</u>

3.1.Pilot action description

Relamping is one of the key interventions when it comes to energy efficiency. As the word itself suggests, relamping consists of replacing traditional luminaires, such as halogen, incandescent or fluorescent lamps, with modern LED (Light Emitting Diode) lamps, in order to achieve a reduction in energy consumption.

Perhaps the most important advantage of LEDs is their control, i.e. the ability to control their brightness and colour temperature remotely. All aspects of smart lighting make this technology even more interesting with a view to using it only when and where it is really needed.

Finally, the reduction of environmental impact should not be overlooked, as LED lamps are non-toxic and do not contain mercury.


PNAEAS has therefore carried out replacement of existing luminaires with new LED technology units.

A total of **523 traditional lightings** were replaced with LED technology. The area was divided into sectors as specified in the Master Plan of the Port of Trieste, with a progressive number per sector:

- Sector 1 "Barcola Bovedo" and "Porto Franco Vecchio"
- Sector 2 "Porto doganale" and "Rive"
- Sector 3 "Riva Traiana" and "Porto Franco Nuovo"
- Sector 4 "Arsenale San Marco", Timber Yard, Logistics Platform and Pier VIII
- Sector 5 Mineral Oil Free Point and "Esso" area, Industrial Canal and "Valle delle Noghere"
- Sector 6 Muggia coastline

Below is a legend of the LED bulbs installed and a complete list with the number and type of bulb corresponding to each sector.

	Armiture Studie 1ED 1933 In, 400 K, 141 In:W Otka Nerve Road, CRI 70, Classe 1 THORN 05275842 IF 15120-T40 NR BPS CL2 MIX ANT	0	L12	Froeture LED 11425 kg, 4000 kg, 148 km/m Oots, 67, 047 70, Cause 2 Atmentatore DALI THORN 96644650 AFP 8 36176-740 A6 HFX CL2 GY	
	Arreduce, stroder, LED 3653 in, 4000 K, 541 in/W Otics Kanos Roed, CRI 78, Clesse 2 Alicentation 2043 THORN 92949075 81 12.75-740 NR BP 2550 HFX CL2 TOOF ANT	•	[13]	Projektow I.20 11320 in, 4000 A, 151 InVM OBio 40°, CHI 73, Classe 3 Altricettown DAUJ THORN 08044548 AFP 8 38LTO-740 A4 HFX CL2 GY	
	Antolium Under (ED) Sh15 im, JU20 K, 142 im/S Office Edm Wate Road, CR016, Cardie 2 THORN (\$275903 IP 24L59-740 EWR BPS CL2 T&OF ANT WB		14	Protecture LED 23335 im, 4000 K, 1555 im/54 Otto: 44°, CAT 76, Classe 2: Affrectistate: DAJ THORN 95645015 AFF M 72LT0-740 A4 HFX CL2 GY	
5	Ammilians streated LED 6454 tm, 4000 K, FSI InnW Office Hamme Road, CRI 77, Clesse J THORN 90276040 IP 36L50-740 NR BPB CL2 MK0 ANT		(L15)	Projettare LED 23/15 m, 4000 K, 154 cmW Chice Entre Wide Front, CRI TB, Clictor 1 Administrative Replacem THORN 90644005 AFP M 72LT0-740 EWR BPB CL2 GY	
L6	Amatum cindex LED 13355 m, 4856 n, 142 and Other Namon Robal, CRI TE, Classe 2 THORN 96276042 IP 16US5740 NR BP8 CL2 M60 ANT		(16)	Projeture LED S1351m, 4000 K, 143 es/W ORbs 407, CP 70, Olicze 2 Abnetioner DALI THORN 08032240 AFF L 144L85-740 A4 HFX CL2 GY	
	Arridue chellor LED 2008 ht, 4000 s, 147 kmW Office Exter Mar Road, CRI 78, Classe 3 THORN 92004809 IP 72L70-740 NR BPS CL2 MK0 ANT	Ø		Protectors LED alto Acces 100000 am, 2005 4, 143 in/W Orbits 507 GRI 10, Occes 1 Rineritations CAU THORK Workscot + 00031414 ALTIBLEDG3 300LA61 T40+ ALTIBLEDG3 GB 300LI05 200-440 DA	
19	Produce LED 4021 m, 400 K, 151 m/W Office Even We Read, 050 T0, Office 2 Alternative D4L THORN 90644723 AFP 8 34L35-T40 EWR HFX CL2 GY		2	Providence LED architecture dista in, 2000-4003 4, 32 W Office BTV, OR HG, Craces J. Alternatione DAU THORN 90635026 + 90635056 CONT3 12J, 10 722-540 NS HFX 8F ANT + CONT3 12J, DNFFUSER EB 10X40* ANT	-
[]]	Politikan LED E21 an, ACO X, 152 mW Office Eco Wite Read, CRI 70, Classe 3 Atmentative CALI THORN \$6044783 AFP 8 36L35-740 EWR HFX CL2 BY		L18	Appenentific LED alto Sutto 4055 in, 4500 H, 107 intW Otka Simmetica, CRI 10, Cappe 2 THORN \$6635668 FEROZ LED4200-640 OP HF L1200 TW	
I	Politikare LED 1792 Int, 4003 K, 150 m/W Office Even Mills, Fiscal, OFFITE, Diesse 3 Attractioner DAL1 THORN 96044763 AFP 8 34L70-740 EWR HFX CL2 BY			REnation man wood 4 152 lents THORN 94635011 RF CONTROLLER PIR E	Ø
n	Numeratore parts and substation loose.	-	II.	CONNIGE RF THORN 96628009 RF CONTROLLER E	Ð
				Generally side the controls like ministeries THORN 96625013 GATEWAY SIMC ETH E	0

NU	MBERING OF INDIVIDUAL LIGHTINGS - PORT OF T	RIESTE	
SECTOR	POWER SUPPLY	LIGHT NUMBER	BULB TYPE
		1 2	L8 L8
		3	L8
		4	L8
		5	L8
		6	L8
		7 8	L8 L8
		9	L8
		10	L8
	QE ILLUMINAZIONE MOLO III	11	L8
		12	L8
		13 14	L8 L8
1		14	L8
		16	L8
		17	L8
		18	L8
		19	L8
		20	L8
		21 22	L8 L8
		23	L8
		23	L8
	QE ILLUMINAZIONE MOLO 0	25	L8
		26	L8
		27	L8
		28	L8
	QE CAPITANERIA	1 2	L4 L4
		3	L4
		4	L4
	QE ILLUMINAZIONE MOLO BANDIERA	5	L4
		6	L4
2		7	P2
-		8	P2
		9 10	P2 P2
	QE SCALE	10	P2
		12	P2
		13	P2
		14	P2
	CABINA TORRE LLOYD	1	L15
		2	L15
	QE TORRE OROLOGIO	3 4	P2 P2
		5	P2
		6	L11
		7	L11
		8	L11
		9	L11
4	QE VARCO SCALO LEGNAMI	10 11	L11 L11
4		11 12	L11 L11
		13	L11
		14	L11
		15	L11
		16	L6
		17	L6
	QE PARTI COMUNI VIA SVEVO	18 19	L6 L6
		20	L6
		21	L6
		1	L9
		2	L9
		3	L9
		4	L9
	QE VARCO PFOM	5	L9 L9
5		7	L9
5		8	L9
		9	L9
		10	L18
	QE FINANZA PFMO	11	L18
		12	L18
		13	L18

SECTOR	POWER SUPPLY	LIGHT NUMBER	BULB TYPE
		1	L2
		2	L2
		3	L2
		4	L2
		5	L2
		6	L2
		7	L2
		8	L2
		9	L2
		10	L2
		11	L2
		12	L2
		13	L2
		14	L2
		15	L14
		16	L14
		17	L14
		18	L14
		19	L14
		20	L14
		21	L14
		22	L14
		23	L2
		24	L2
		25	L3
		26	L2
		27	L3
		28 29	L2 L3
		30	L3 L2
		30	L2 L3
		32	L3 L2
		33	L2 L3
		34	L2
		35	L2 L3
		36	L3
		37	L3
		38	L3
		39	L3
		40	L3
3	CABINA VARCO 1	40	L3
5	CABINA VARCO I	41	L3
		42	L16
		43	L10 L3
		45	L12
		46	L3
		47	L16
		48	L10
		49	L3
		50	L3
		51	L3
		52	L3
		53	L3
		54	L3
		55	L3
		56	L12
		57	L12
		58	L13
		59	L13
		60	L13
		61	L13
		62	L2
		63	L2
		64	L2
		65	L2
		66	L2
		67	L2
		68	L2
		69	L2
		70	L2
		71	L6
		72	L2
		73	L6
		74	L6
		75	L5
		76	L2
		77	L2
		78	L2
		79	L2
		80	L2

SECTOR	POWER SUPPLY		BULB TYPE
		82 83	L2 L2
		84	L2 L2
		85	L10
		86	L10
		87	L10
		88	L10
		<u>89</u> 90	L10 L10
		90	L10
		92	L10
		93	L10
		94	L10
	QEG VARCO 1	95	L10
		96	L10
		97	L10
		98 99	L10 L10
		100	L10
		100	L10
		101/1	L10
		101/2	L10
		101/3	L10
		102	L5
		103	L5
		104	L5 L5
		105 106	L5
3		100	L3
J.		107	L4 L4
		109	L4
		110	L4
		111	L4
		112	L4
		113	L4
		114	L4
		115 116	L4 L10
	CABINA 57	116	L10
		117	L10
		119	L6
		120	L4
		121	L4
		122	L14
		123	L14
		124	L14
		125	L14
		126 127	L14 L10
		127	SPARE
		129	SPARE
		130	SPARE
		131	SPARE
		132	SPARE
		133	L9
		134	L10
		135	L9
		136 137	L9 L10
		137	L10 L9
		138	L9
		140	L10
		141	L9
		142	L9
		143	L9
		144	L10
		145	L10
		146	L9
3	QEG SCANNER	147 148	L9 L9
5	QEG SCAININER	148	L9
		149	L10
		150	L10
		151	L9
		153	L9
		154	L9
		155	L9
		156	L10
		157	L10
		158	L9
		159	L9
		160	L9 L10
			110
		161 162	L9

SECTOR	POWER SUPPLY	LIGHT NUMBER	BULB TYPE
		164	L10
		165	L9
		166	L9
		167	L9
		168	L9
		169 170	L10 L9
		170	L9
		171	L10
		173	L9
3	QEG SCANNER	174	L9
		175	L10
		176	L9
		177	L9
		178	L10
		179	L9
		180	L9
		181	L10
		182	L9
		183	SPARE
		184	SPARE
		185 186	L13 L13
		186	L13 L13
		187	L13 L13
		189	L13
		190	L13
		190	L13
		192	L13
	CABINA 58	193	L13
		194	L13
		195	L13
		196	L13
		197	L13
		198	L13
		199	L13
		200 201	L13 L13
		201	L13 L17
		202	L17 L17
		203	L17
	CABINA 65	205	L17
	0/12/11/100	206	L17
		207	L16
		208	L16
		209	L13
		210	L13
3		211	L13
5		212	L13
		213	L13
	CADINA 74	214	L13
	CABINA 71	215 216	L13 L13
		216	L13 L13
		217	L13
		218	L13
		220	L13
		221	L13
		223	L13
		224	L13
		225	L13
		226	L13
	QEG VARCO 4	227	L13
		228	L13
		229	L13
		230	L13
		231	L13
		232	L13
		233 234	L5 L5
		234	L5
	QE RAMPA	235	L5
		230	L5
		238	L5

Г

SECTOR	POWER SUPPLY	LIGHT NUMBER	BULB TYPE
		240	L5
		241	L5
		242	L5 L5
		243	L5
		245	L5
		246	L5
		247	L5
		248	L5
		249	L5
		250	L5
		251	L5
		252	L3
		253	L3
		254	L3
		255 256	L3 L3
		256	L3
		258	L3
		259	L3
		260	L3
		261	L3
		262	L3
		263	L3
		264	L3
		265	L3
		266	L3
		267	L3
		268	L3
		269	L3
		270 271	L3 L3
		271	L3
		272	L3
		273	L3
		275	L3
		276	L3
		277	L3
		278	L2
3	CABINA 60	279	L2
5	CABINA 00	280	L2
		281	L2
		282	L2
		283	L2
		284	L2
		285	L2 L2
		286 287	L2 L2
		288	L2 L2
		289	L2
		290	L2
		291	L2
		292	L2
		293	L2
		294	L2
		295	L2
		296	L2
		297	L2
		298 299	L2 L2
		300	L2 L2
		300	L2 L2
		302	L2 L2
		303	L2
		304	L2
		305	L2
		306	L2
		307	L16
		308	L2
		309	L6
		310	L2
		311	L16
		312	L6 L2
		313 314	L2 L2
		315	L2 L2
		315	SPARE
		317	SPARE
		318	SPARE
		319	SPARE

SECTOR	POWER SUPPLY	LIGHT NUMBER	BULB TYPE
		320	L3
	321	L3	
		322	L3
		323	L3
		324	L3 L3
		325	
		326	L3 L3
		327	L3 L3
		328	
		329	L3
		330	L3 L3
		331	
		332 333	L3 L3
		334	L3
		335	L3 L3
		335	L3 L3
		337	L3
		338	L3
		338	L3
		340	L2 L3
		340	L3 L2
		341	L2 L2
		343	L2 L2
		343	L2 L2
		345	L2 L2
		345	L2 L2
		346	L2 L2
		348	L2 L2
3	CABINA 72	348	L2 L2
		349	L2 L2
		350	L2 L2
		352	L2 L2
		353	L2 L2
		355	L2 L2
		355	L2 L2
		355	L2 L2
		357	L2 L2
		358	L2 L2
		359	L2 L2
		360	L2 L2
		361	L2 L2
		362	L2 L2
		363	L2 L2
		364	L2 L2
		365	L2 L2
		366	L2 L2
		367	L2 L2
		368	L2 L2
		369	L2 L2
		370	L2 L2
		370	L2 L2
		371	L2 L2
		372	SPARE
		373	SPARE
		374	SPARE
		375	SPARE
		370	SPARE
		378	L5
		378	L5
		379	L5
		380	L5
		381	L5
		383	L5
		384	L5
		385	L3
		386	L4 L5
		380	L3
		388	L4 L4
		389	L4 L4
	CABINA SSP	390	L4 L3
3		390	L3
3			LH
3			
3		392	L4
3		392 393	L4 L4
3		392 393 394	L4 L4 L4
3		392 393 394 395	L4 L4 L4 L4 L4
3		392 393 394 395 396	L4 L4 L4 L4 L4 L4
3		392 393 394 395 395 396 397	L4 L4 L4 L4 L4 L4 L4
3		392 393 394 395 396 397 398	L4 L4 L4 L4 L4 L4 L4 L4 L4
3		392 393 394 395 395 396 397	L4 L4 L4 L4 L4 L4 L4

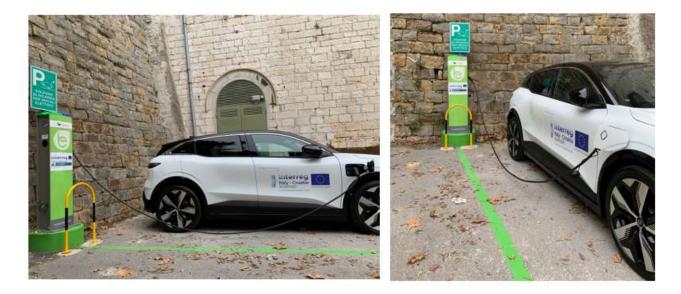
SECTOR	POWER SUPPLY	LIGHT NUMBER	BULB TYPE
		402	L4
		403	L3
		404	L3
		405	L3
		406	L3
		407	L3
		408	L3
		409	L3
		410	L3
		411	L3
		412	L3
		413	L3
		414	L3
		415	L3
		416	L3
		417	L3
		418	L3
		419	L3
		420	L3
		421	L3
		422	L3
	CABINA SSP	423	L3
3		424	L3
5	CABINA 55P	425	L3
		426	L3
		427	L3
		428	L3
		429	L3
		430	L3
		431	L3
		432	L3
		433	L3
		434	L3
		435	L3
		436	L3
		437	L3
		438	L3
		439	L3
		440	L3
		441	L3
		442	L3
		443	L3
		444	SPARE
		445	SPARE
		446	SPARE
		447	SPARE

Pilot action no. 4 : <u>E - CARS</u>

4.1.Pilot action description

According to Directive 2014/94/EU of the European Parliament and of the Council of 22 October 2014, ports are incentivised to consider, for internal mobility, the transition to the electric vehicle. This will allow ports to benefit in terms of energy efficiency and air quality (no on-site emissions of pollutants and fine dust). The focus is therefore on investment in electric vehicles and the construction of electric charging points to promote their use.

Currently, PNAEAS has two hybrid cars used by the inspection team for service in the port areas, while the 'in house' service company Porto di Trieste Servizi S.r.l. has an electric car, also used for service in the port areas.


Thanks to SUSPORT, the Port of Trieste has purchased **2 electric vehicles** to serve its employees and implemented the number of environmentally friendly vehicles. The two purchased cars, which will further reduce pollution, are the following:

RENAULT MEGANE E-TECH 100% ELECTRIC TECHNO EV60 220CV OPTIMUM CHARGE

In this regard, we would like to emphasise the complementarity with the pilot action envisaged in the CLEAN BERTH project, *Cross-border Institutional Cooperation for Environmental Sustainability and Energy Efficiency in Ports*, co-financed by the Interreg Italy-Slovenia Programme, which envisages in 2022 the construction of three electric vehicle recharging stations, located at the Port's premises. Furthermore, PNAEAS also participates to the European Project "NOEMIX" (Project for the promotion of electric mobility in the Public Administration - Horizon 2020 Programme), which envisages the complete replacement of the current car fleet (with conventional engines), through the "leasing" formula, with "full electric" cars and the simultaneous installation of additional charging stations.

CONCLUSIONS

The realisation of the pilot actions within the SUSPORT project allowed PNAEAS to achieve significant green targets in terms of CO2 emission reduction.

As indicated in all the documents mentioned in the introduction, TNA Analysis and Best Practice Analysis, to achieve energy and operational sustainability of ports it is necessary for them to implement a mix of actions by exploiting new technologies and new sources of renewable energy, from cold ironing, to the purchase of electric vehicles, to the replacement of lighting systems with LED technology.

Although the monitoring, described in Pilot Action 1, as a mere monitoring activity, it does not lead to a direct reduction of CO2 emissions, but thanks to it, monitoring data will be used to validate implemented activities and improve planned ones, providing useful information to identify and enhance the most effective measures to consolidate the best short-, medium- and long-term strategies for environmental sustainability.

The following table summarises the results achieved for each pilot action in reducing CO2 emissions (with the exception of pilot action no.1 as specified above):

CO2 REDUCTION EXPECTED FROM PILOT ACTIONS		
	PILOT ACTION	EXPECTED CO2 EMISSION REDUCTION [T/YEAR].
2	COLD IRONING OF THE QUAYS OF PIER VII IN THE PORT OF TRIESTE	12.398,13
3	REPLACING OF THE LIGHTING SYSTEM WITH LED LIGHT BULBS	134,12
4	E-CARS	16,09
	TOTAL	12.548,34

Thanks to SUSPORT the Port of Trieste will be able to reduce CO2 emissions by a total of **12.548,34** t/year. This result together with those obtained by the other Ports in the Programme area will strengthen environmental protection and decreasing GHG emissions of the cross-border maritime transport.