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Abstract: Combining field collected and remotely sensed (RS) data represents one of the most
promising approaches for an extensive and up-to-date ecosystem assessment. We investigated the
potential of the so called spectral variability hypothesis (SVH) in linking field-collected and remote-
sensed data in Mediterranean coastal dunes and explored if spectral diversity provides reliable
information to monitor floristic diversity, as well as the consistency of such information in altered
ecosystems due to plant invasions. We analyzed alpha diversity and beta diversity, integrating
floristic field and Remote-Sensing PlanetScope data in the Tyrrhenian coast (Central Italy). We
explored the relationship among alpha field diversity (species richness, Shannon index, inverse
Simpson index) and spectral variability (distance from the spectral centroid index) through linear
regressions. For beta diversity, we implemented a distance decay model (DDM) relating field pairwise
(Jaccard similarities index, Bray–Curtis similarities index) and spectral pairwise (Euclidean distance)
measures. We observed a positive relationship between alpha diversity and spectral heterogeneity
with richness reporting the higher R score. As for DDM, we found a significant relationship between
Bray–Curtis floristic similarity and Euclidean spectral distance. We provided a first assessment of the
relationship between floristic and spectral RS diversity in Mediterranean coastal dune habitats (i.e.,
natural or invaded). SVH provided evidence about the potential of RS for estimating diversity in
complex and dynamic landscapes.

Keywords: spectral variation hypothesis (SVH); planetscope images; vegetation plots; coastal dune
landscapes; Carpobrotus spp. invasion

1. Introduction

Biodiversity loss due to human activities is accelerating at an extraordinary pace,
and several researchers hypothesize that life on Earth is undergoing a mass extinction
phenomenon [1], which makes continuous ecosystem monitoring a pressing need [2].
Nonetheless, regular assessment of biodiversity is difficult to undertake via field sur-
veys [3].

The economic limitations in many countries restrict the possibilities of implementing
monitoring programs based on large-scale fieldwork [4]. Furthermore, collecting extensive
and representative data in the field could be hampered by the impossibility to reach some
monitoring areas [5]. Systematically surveying and monitoring complex and dynamic
ecosystems (e.g., coastal dunes or river banks) by conventional biodiversity field campaigns
might not be possible due to high costs, challenges to access to some sampling sites and lack
of historical data [6,7]. Such crucial limitations hamper implementing statistically sound
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monitoring schemes that are essential for better understanding and modelling biodiversity
in space and time [8].

In contrast to field-based methods, satellite remote sensing (RS) providing frequent
and complete spatial coverage is a cost-effective (free remotely sensed products) and
comprehensive support for monitoring several biodiversity features at multiple spatial
scales [9–11]. Furthermore, combining remotely sensed and in situ field data represents
one of the most promising approaches to fill the gaps in biodiversity monitoring [4].

In 2002, Palmer and coauthors postulated the spectral variability hypothesis (hereafter
SVH), stating that the larger the spectral heterogeneity of an environment the higher its
biodiversity [3]. Since then, several research efforts have been devoted to explore the
relationship between remotely sensed and field-collected data [12,13] accounting for both
alpha diversity (e.g., within sample/pixel variability) [14] and beta diversity (e.g., between
samples/pixels variability) [15]. The potential of SVH to depict alpha diversity was tested
on several ecosystems covering large areas as evergreen forests [10], tropical forests [16],
wetlands [17], grasslands [18], savannah woodlands [19]. Similarly, SVH was tested to
explore beta diversity on Mediterranean shrubs and forests [15,20], tropical forests [21,22],
deciduous forests [23] and grasslands [24]. However, little attention has been paid to
extend SVH applications to more complex and dynamic landscapes [25]. In particular,
the SVH effectiveness in depicting field and spectral diversity patterns on very dynamic
ecosystems such as coastal dunes is still missing.

Coastal dunes environments occur on narrow strips of land interposed between ma-
rine and terrestrial realms [26,27]. The strong influence of continuous sudden changes on
abiotic and biotic factors promotes the development of highly specialized biodiversity and
a peculiar vegetation mosaic [28–30]. Furthermore, coastal sand dunes are among the most
threatened habitats at both global [31,32] and European level [33,34]. Therefore, updated
monitoring protocols able to summarize its biodiversity trends are urgently needed [35].
Among multiple threats, coastal landscapes are seriously impinged by alien plant inva-
sions [36–38], whose negative effects on natural ecosystems have been explored using field
data or RS independently [39,40]. Field-research gave evidence of alterations of species
diversity [41] and cover [42] in invaded areas, while RS research underlined significant
functional traits modifications [43] and niche shifts [44]. However, an integrated approach
summarizing floristic, field–measured, diversity values and spectral RS variability indices
in areas with different invasion levels has not been carried out yet. Understanding how
plant diversity and spectral variability vary on invaded ecosystems could be crucial for
monitoring and management of coastal dunes systems, in order to preserve and improve
the conservation status, the functions and the associated ecosystem services [39,45,46].

On these bases, the present work sets out to investigate the potential of SVH in
linking field collected and remote-sensed data in a complex and dynamic ecosystem.
Specifically, we explored if spectral diversity provides reliable information to monitor
floristic diversity in Mediterranean coastal dunes, as well as the consistency of such
information in altered ecosystems due to plant invasions. We analyzed: (i) the local
diversity (alpha) within sampling units and, (ii) the turnover diversity (beta) among
sampling units in well-preserved and invaded areas, through the simultaneous analysis of
field vegetation plots and RS PlanetScope images. We focused on a representative sector of
the sea-inland coastal dune mosaic hosting some habitats of conservation concern in Europe
(sensu 92/43/EEC) [33,34]. We followed a standard system of vegetation classification in
order to provide specific insights that can help to improve the monitoring strategies claimed
by the European conservation directive (Habitats Directive 92/43/EEC). If confirmed
for coastal dune vegetation, SVH will provide an integrative tool for monitoring and
management of coastal dune biodiversity, improving and simplifying the assessment of
biodiversity in space and time.
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2. Materials and Methods
2.1. Study Area

The study was carried out in a coastal tract representative of the Tyrrhenian dunes
in central Italy (Lazio region, Figure 1). The sampled sector, approximately 70 km long,
includes low sandy Holocenic dunes with Mediterranean climate [47] disposed on a nar-
row strip along the seashore (<500 m) [28]. In natural conditions, plant communities on
shifting dunes are dominated by few dune-building perennial rhizomatous grasses (e.g.,
Elymus farctus, Ammophila arenaria subsp. australis), which occasionally form monospecific
vegetation patches. Plant communities on fixed dunes are characterized by small chamae-
phytes (e.g., Crucianella maritima) intermingled with species-rich therophytic grasslands
(e.g., Cutandia maritima, Lagurus ovatus) [48,49]. As on most of the Mediterranean coasts,
the analyzed dunes have undergone persistent human pressure that altered coastal land-
scapes and vegetation [49,50], with several sectors having been invaded by the iceplant
(Carpobrotus spp.) [51,52]. Carpobrotus spp. is a perennial herb with succulent leaves that
develops wide creeping mats [51]. It is native of South Africa and, along the Italian sand
coasts, it preferentially invades herbaceous vegetation of shifting and fixed dunes [37,53,54].
Field research evidenced that Carpobrotus spp. invasion substantially alters ecosystems
diversity [52,55] and functioning of invaded areas [51,56], with such variations being also
detectable by RS spectral values [57,58].
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Figure 1. Study area (reference system WGS84 33N, epsg: 32633) along with sampling plots.

2.2. Data Collection and Analysis

We tested the spectral variability hypothesis (SVH) for alpha and beta diversity in
coastal dunes following a sequence of steps schematically reported in Figure 2: (1) Data
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setting, (2) Alpha diversity analysis, (3) Beta diversity analysis, (4) spectral variability
hypothesis test.
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Figure 2. Workflow describing the procedure followed for investigating the potential of the spectral variability hypothesis
for depicting alpha and beta diversity levels on herbaceous coastal dune vegetation.

2.2.1. Data Collection
Field Data Collection

We selected biodiversity field data consisting in a set of georeferenced vegetation plots
lately collected (years 2017–2020) and stored in the “RanVegDunes” database [59,60] and
for which coeval remote sensed images (PlanetScope) were available (Figure 2, box a and b).
Specifically field biodiversity data consisted on 163 random 2 × 2 m vegetation plots
sampled during the growing seasons (April–May) reporting a complete list of vascular



Remote Sens. 2021, 13, 1928 5 of 17

plant species along with their cover in percent. Each plot was also assigned to a EUNIS
(European Nature Information System) habitat category, a comprehensive Pan-European
classification scheme [60] holding an exact correspondence with European Habitats sensu
92/43/EEC (Table 1), which assured the usefulness of our results to develop new habitat-
specific monitoring strategies. Overall, the field floristic data include 79 plots collected on
shifting coastal dunes (Shifting dunes, EUNIS code N14), 41 plots on fixed coastal dune
(Transition dunes, EUNIS code N16) and 43 invaded plots in which Carpobrotus spp. covers
more than 25% (Invaded dunes, Table 1).

Table 1. Description of herbaceous dune communities referred to EUNIS (European Nature Informa-
tion Systems) categories, along with their corresponding European Union (EU) habitat (ex Annex I
92/43/EEC) and the respective number of sampling plots. Coastal dune vegetation with the presence
Carpobrotus sp. covering more than 25% are also reported.

Acronym/Vegetation
Categories

Description and Correspondence with EU Habitats
(Ex Annex I 92/43/EEC)

Number
of Plots

Shifting
dunes/EUNIS-N14

Mobile coastal sand ridges including embryonic dunes
characterized by Elymus farctus and semi-permanent dune
systems dominated by Ammophila arenaria subsp. australis

(EU habitat code: 2110, 2120).

79

Transition
dunes/EUNIS-N16

Fixed dune grasslands including chamaephytic
communities of the inland dunes dominated by Crucianella
maritima and annual species-rich communities colonizing
dry interdunal depressions. (EU habitat code: 2210, 2230).

41

Invaded dunes Herbaceous vegetation with the presence Carpobrotus spp.
covering more than 25 percent. 43

Remote-Sensing Data

We selected as RS diversity data the set of pixels with the same geographic coordinates
and date of the vegetation plots (Figure 2, box a and b). We extracted RS data from
12 cloud-free PlanetScope (PS) satellite images (zenith angle view <10◦; size 3 m, https:
//www.planet.com/explorer/ (accessed on 28 November 2020), Table S1). We adopted the
surface reflectance of the orthorectified PS images (level 3B).

We used for the analysis four spectral bands: blue (B, 455–515 nm), green (G, 500–590
nm), red (R, 590–670 nm), and near infrared (NIR, 780–860) [61] and two spectral indices:
Modified Soil-Adjusted Vegetation Index 2 (MSAVI2) and Coloration Index (CI, Table 2).
The selected spectral indices are particularly appropriate for describing and mapping
heterogeneous landscapes where vegetation and bare surfaces are intermingled [62] as is
the case of well-preserved and altered coastal dunes invaded by Carpobrotus spp. [57,58].
MSAVI2 is especially useful for quantifying the photosynthetic biomass in landscapes
characterized by high percentages of bare surfaces [62–64]. It ranges from −1 (absence of
vegetation biomass) to 1 (maximum of vegetation biomass), with higher values indicating
higher percentages of photosynthetic biomass [63,65]. CI is a color soil index used to
characterize soil conditions [66] and to reveal the organic content in arid soils by the green–
red reflectance ratio [67]. This index ranges from −1 to 1, with higher values indicating
darker coloration [68].

We built up the spectral dataset (Figure 2, box a) by extracting for each vegetation
plot the respective pixel PS value of blue, green, red and NIR spectral bands, and of the
derived MSAVI2, and CI spectral indices (Table 2). Pixels were classified according with
their respective field plot EUNIS (e.g., “Shifting dunes”-EUNIS-N14, “Transition dunes”
-EUNIS-N16) or altered (“Invaded dunes”) category.

https://www.planet.com/explorer/
https://www.planet.com/explorer/
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Table 2. Spectral variables selected for analyzing alpha and beta spectral diversity along with their related band-
width/equation, index proxy and references.

Acronym Name Bandwidth/Equation Index of Reference

B Blue band 455–515 nm – [61]
G Green band 500–590 nm – [61]
R Red band 590–670 nm – [61]

NIR Near Infrared band 780–860 nm – [61]

MSAVI2 Modified Soil Adjusted
Vegetation Index 2

2∗NIR+1−
√
(2∗NIR+1)2−8∗(NIR−RED)

2

photosynthetic
biomass [63]

CI Colouration index RED − GREEN
RED+GREEN

organic content
level in soil [66]

2.2.2. Alpha Diversity Analysis

Alpha diversity summarizes the variability within sampling units and can be ex-
pressed as richness (i.e., the number of item types) and evenness (i.e., items’ relative
abundance) [69,70]. As sampling units, we considered the vegetation plots for field dataset
and the corresponding pixels for spectral information.

We analyzed alpha diversity from field data using three indices (Figure 2, box b;
Table 3): species richness (S), Shannon (H’) and inverse Simpson index (D) [71], through
the “BiodiversityR” R package (function diversityresult) [72]. Species Richness quantifies
the count of species inside plots [73], while Shannon diversity (H’) accounts for the number
of species and their relative evenness [19,74,75]. The Shannon index varies from 0 in plots
with one dominant species to an undetermined maximum in plots with equally abundant
species [71]. The Simpson index, also called “dominance index”, summarizes species
richness and dominance. The inverse Simpson index (D) is the reciprocal of the Simpson
index, and ranges from one in plots with only one species to an undetermined maximum
in plots with all individuals belonging to different species [71,76,77].

Table 3. Alpha diversity indices used for analyzing field vegetation data along with the formula and
references. N = total number of species; ni = each species; pi = abundance value of i-species.

Acronym Name Formula References

S Species Richness N
∑

i=1
ni

[73]

H’ Shannon index −
N
∑

i=1
pi x ln(pi)

[74]

D Inverse Simpson index 1/
N
∑

i=1
p2

i
[76]

We expressed the RS alpha diversity as the distance from the spectral centroid index
(Figure 2, box b) [9,14]. Specifically, we calculated the mean distance of all the sampled
pixels from the principal component analysis (PCA) centroid built on pixels’ spectral values
(B, G, R, NIR, MSAVI2 and CI) [14,75]. Higher values of the distance from the spectral
centroid index indicates higher pixel spectral heterogeneity [14]. The PCA of the spectral
dataset, the identification of the spectral centroid and the calculation of the Euclidean
distance from the spectral centroid, were performed using R package “pracma” (function
distmat) [78].

2.2.3. Beta Diversity Analysis

Beta diversity depicts the variation among sampling units in both composition and
abundance values [69,70]. For beta diversity analysis, we considered as sampling units the
vegetation plots (species presence and abundance) and the corresponding pixels (spectral
bands and indices values).
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Beta diversity in field data was analyzed using two different pairwise measures: the
Jaccard similarity matrix using plant occurrence (presence/absence data), and the Bray–
Curtis similarity matrix based on abundance values (species cover). Jaccard similarity
index (J) quantifies the pairwise similarity between vegetation plots as the ratio between
the number of species in common and the number of species that are unique to each plot.
J values scoring as zero indicate total inequality among plots, while the total equality is
identified by J values of one (Table 4) [79,80]. The Bray–Curtis similarity index (BC) depicts
the vegetation plots pairwise differences using quantitative species cover data [71,81]. The
BC dissimilarity is defined as the ratio between the difference of abundance values and
the sum of abundance values for each species. We calculated the similarity values by
subtracting the dissimilarity values to one (Table 4). BC ranges from zero when the plots
are completely different to one when the species composition of two plots is identical [82].

Table 4. Beta diversity indices used for analyzing field floristic data along with the formula and
references. In the Jaccard similarity between plots (p, q), a = number of species shared between p
and q vegetation plots, b = number of unique species in the p vegetation plot, c = number of unique
species in q plot. In the Bray–Curtis similarity between plots (p, q), xpi = the abundance value of the
i-species on plot p and xqi the abundance value of the i-species on plot q.

Acronym Name Formula References

J Jaccard similarity index apq
apq+bp+cq

[79]

BC Bray-Curtis similarity index 1 − ∑n
i=1 |xpi−xqi|

∑n
i=1 (xpi+xqi)

[81]

Spectral beta diversity was calculated as the pairwise multivariate Euclidean distance
of the pixel spectral values [15,20,21]. The Euclidean distance measured the shortest
possible distance between two pixels, with higher Euclidean distance values corresponding
to higher differences between two pixels in RS bands and spectral indices values [9]. All
the spectral dataset variables were standardized to zero mean and unit variance, before
moving toward the subsequent analytical steps [20].

2.2.4. Spectral Variability Hypothesis Test

To test the SVH for alpha diversity, we analyzed the relationship between alpha diver-
sity per plot and spectral heterogeneity for the respective pixels using linear regressions.
Specifically, we included in turn plot diversity indices (i.e., species richness, Shannon
index and inverse Simpson index) as response variables and the respective pixels’ distance
from the spectral centroid index, along with dune well preserved and invaded categories
(Shifting, Transition and Invaded dunes, Table 1), as explanatory variables. Goodness-of-fit
was evaluated through R2 (Figure 2, box d) [9,19,75]. Since alpha diversity indices are not
normally distributed, we fit linear regressions where coefficients significance was evalu-
ated by randomly permuting observations in the data. This approach has the substantial
advantage of relaxing the normality assumption of linear regression [83], thus resulting
particularly appropriate in our analytical context. Permutational marginal regressions
were calculated using the R package “permuco” (function lmperm), allowing 5000 random
permutations among observations [84].

To test SVH for beta diversity, we carried out a DDM [85]. In particular, we fit linear re-
gressions and quantile regressions among the floristic Jaccard and Bray–Curtis similarities
and the between-pixels Euclidean distances [21]. We tested SVH using both approaches
because linear regressions model can be less accurate when based on matrices with a high
amount of zeroes, as in our case. The quantile regressions can overcome this limitation
and allow to characterize the relationship of SVH by focusing on specific quantiles [85,86].
We calculated the quantile regressions using four upper quantiles (τ = 0.99, 0.95, 0.90, 0.75)
according to the hypothesis that maximum decay modelling allows to characterize the
maximum beta diversity value [15]. Moreover, higher slopes of the distance decay model
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indicate higher beta diversity values between samples [12]. Finally, we calculated coeffi-
cients confidence intervals for both linear and quantile regressions through a bootstrapping
approach (number of iterations: 1000) [21]. We computed the quantile regressions and their
confidence intervals using R package “quantreg” (function rq and boot.rq respectively) [87].

3. Results
3.1. Spectral Variability Hypothesis (SVH) Alpha Diversity

We observed a significant, positive relationship between species diversity indices and
spectral heterogeneity (Figure 3, Table 5) depicting that species diversity values per plot
increase toward higher values of spectral heterogeneity per pixel. Among the analyzed
alpha diversity indices, Species Richness scored the highest goodness-of-fit (R2 = 0.383),
followed by Inverse Simpson index (R2 = 0.342) and Shannon index (R2 = 0.322, Table 5).
The interaction effects suggested that the abovementioned positive relationship is true
for all the analyzed vegetation types (Shifting, Transition and Invaded dunes, Figure 3).
The regression model for species richness showed a highly significant relationship, with
positive coefficients for all three vegetation categories (Table 5). Similarly, the models
for inverse Simpson and Shannon indices reported significant relationships for the three
analyzed vegetation categories (Table 5). Permutation regressions confirmed significant
relationships for all the considered alpha diversity indices (Table S2).

Table 5. Summary of linear regressions for alpha floristic diversity (species richness, Shannon
and inverse Simpson) vs. spectral heterogeneity (distance from spectral centroid index). Shifting
dunes: N14 EUNIS category; Transition dunes: N16 EUNIS category: Invaded dunes: coastal dune
vegetation with the presence Carpobrotus sp. covering more than 25%. p-value: * <0.05; ** <0.01;
*** <0.001.

Species Richness—Distance to Centroid R2 = 0.383

Linear Model with Interactions Estimate Std. Error p-Value

Distance to centroid: Shifting dunes 3.937 × 10−3 9.512 × 10−4 5.362 × 10−5 ***
Distance to centroid: Transition dunes 4.554 × 10−3 8.794 × 10−4 6.666 × 10−7 ***
Distance to centroid: Invaded dunes 4.746 × 10−3 8.903 × 10−4 3.311 × 10−7 ***

Shannon Index—Distance to Centroid R2 = 0.322

Linear Model with Interactions Estimate Std. Error p-Value

Distance to centroid: Shifting dunes 4.202 × 10−4 1.754 × 10−4 0.018 *
Distance to centroid: Transition dunes 5.556 × 10−4 1.622 × 10−4 7.697 × 10−4 ***
Distance to centroid: Invaded dunes 5.702× 10−4 1.642 × 10−4 6.624 × 10−4 ***

Inverse Simpson Index—Distance to Centroid R2 = 0.342

Linear Model with Interactions Estimate Std. Error p-value

Distance to centroid: Shifting dunes 1.695 × 10−3 6.450 × 10−4 9.426 × 10−3 **
Distance to centroid: Transition dunes 2.231 × 10−3 5.963 × 10−4 2.547 × 10−4 ***
Distance to centroid: Invaded dunes 2.239 × 10−3 6.038 × 10−4 2.885 × 10−4 ***

In the Cartesian space, the shifting coastal dune vegetation (EUNIS-N14) regression
line was below the other categories with significant lower values for species richness (SN14=
1–13), Shannon index (H’N14 = 0.000–2.259) and Inverse Simpson index (DN14 = 1.000–7.376,
Figure 3). The regression lines for transition fixed dunes (EUNIS-N16) and invaded
vegetation (Invaded dunes) showed similar trends and ranges, slightly differentiating
only in species numbers (SN16 = 2–15; SI = 4–18, Figure 3), whereas in both the Shannon
index and inverse Simpson index the trends and ranges resulted almost identical (H’N16 =
0.64–2.450, H’I = 1.077–2.502, DN16 = 1.830–10.960, DI = 2.117–9.212).
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3.2. SVH Beta Diversity

The distance decay models’ fit with both linear and quantile regressions evidenced
negative and significant decay rates (Figure 4, Table 6) for all the categories (i.e., Jaccard
floristic similarities vs. Euclidean spectral distance and Bray–Curtis floristic similarities
vs. Euclidean spectral distance). Accordingly, the similarity among floristic plots were
significantly higher when the respective pixels were spectrally closer.

In the DDM based on Jaccard floristic similarity vs. Euclidean spectral distance, the
decay rates showed the lower slope values for linear regression, with slopes increasing
until the 0.95 quantile. The slope of 0.99 quantile instead resulted lower than the 0.95 one
(Figure 4, Table 6).

The DDM based on Bray–Curtis floristic similarity vs. Euclidean spectral distance
showed most intense decay rates at intermediate quantiles (0.90 and 0.95), and the lower
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rate for the linear regression. The decay rates of the 0.75 and 0.99 quantile showed a
intermediate trends respect the others quantiles (Figure 4, Table 6).

In both DDMs, the intercepts of all five regressions indicated significant values with
higher values with respect to the linear regression to 0.99 quantile (Figure 4, Table 6). This
increasing intercept values confirmed that plots with higher similarity values correspond
to pixels with lower spectral distance.

The distribution of fitted values in the DDM (Jaccard floristic similarities vs. Euclidean
distance and Bray–Curtis floristic similarities vs. Euclidean distance) differed. Even if
the two similarity matrices showed comparable variation ranges (0.000–0.937 for Jaccard
similarities matrix, 0.000–0.968 for Bray–Curtis similarities matrix), the measures of central
tendency diverged. Indeed, the Jaccard similarity matrix resulted closer to zero (mean:
0.107, median: 0.083, standard deviation: 0.106) than the Bray–Curtis one (mean: 0.179,
median: 0.154. standard deviation: 0.157).
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Table 6. Results of distance decay models calculated by linear and quantile regressions at four different τ values (from
upper to lower lines: 0.99, 0.95, 0.9, 0.75). p-value: *** < 0.001.

Jaccard Similarities—Uclidean Distance

Regression Type τ Intercept Intercept Boundaries
(99%) Decay Rate (10−2) Decay Rate (10−2)

Boundaries (99%)

Linea regression – 0.145 *** 0.138–0.152 −1.207 *** −1.405–−1.009

Quantile regressions 0.75 0.211 *** 0.202–0.220 −1.665 *** −1.892–−1.412
0.90 0.318 *** 0.306–0.330 −2.312 *** −2.655–−2.009
0.95 0.377 *** 0.361–0.393 −2.426 *** −2.83–−1.927
0.99 0.521 *** 0.491–0.564 −2.226 *** −3.208–−0.849

Bray-Curtis Similarities—Euclidean Distance

Regression Type τ Intercept Intercept Boundaries
(99%) Decay Rate (10−2) Decay Rate (10−2)

Boundaries (99%)

Linear regression – 0.235 *** 0.207–0.257 −1.814 *** −2.106–−1.522
Quantile 0.75 0.353 *** 0.339–0.367 −2.529 *** −2.867–−2.200

0.90 0.489 *** 0.473–0.505 −3.082 *** −3.529–−2.614
0.95 0.552 *** 0.533–0.573 −2.938 *** −3.581–−2.206
0.99 0.686 *** 0.659–0.726 −2.030 *** −3.123–−0.699

When analyzing the DDM separately for the dunes category, the results showed
different trends. The significance of decay rates in Shifting dunes (EUNIS-N14) partially
confirmed SVH. Examining the Jaccard floristic similarities vs. Euclidean distance the
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relationships are preserved for the linear regression, 0.75 and 0.90 quantiles, whereas only
the decay rate of 0.75 quantile is negative and significant in the Bray–Curtis floristic simi-
larities vs. Euclidean distance models (Table S3, Figure S1). In the transitional Gray dunes
(EUNIS-N16) and in the Invaded dunes, the Bray-Curtis floristic similarities vs. Euclidean
distance models confirmed the SVH for all regressions with negative and significant decay
rates, whereas in Jaccard floristic similarities vs. Euclidean distance models these two
categories showed different trends (see Tables S4 and S5, Figures S2 and S3). The transition
Gray dunes verified the SVH only for the linear regression, 0.95 and 0.99 quantiles, and the
Invaded dunes registered negative and significant decay rates for all models (see Tables S4
and S5, Figures S2 and S3).

4. Discussion

In this study, we provided a first assessment of the relationship between floristic and
spectral RS diversity in a highly dynamic landscape, such as coastal dunes. The SVH
analysis, suggested the potential of RS spectral data in providing reliable information
concerning floristic alpha and beta diversity in well-preserved Mediterranean coastal
vegetation (Shifting dunes and Transition dunes) and also on altered dunes invaded by
Carpobrotus spp.

The relation between floristic indices of richness, Shannon and inverse Simpson with
spectral diversity (distance from the spectral centroid) gave evidence of the potential RS
data for monitoring alpha biodiversity [14,88] on heterogeneous and fine grained land-
scapes as Mediterranean dunes. As observed in other ecosystems as the savannah [19,75]
and the evergreen [10] and temperate forests [89], we have registered a positive relation
between species and spectral diversity. As noticed by Nagendra et al. [16] on a markedly
different environment as dry tropical forests, species richness on coastal vegetation resulted
in being related with spectral variability. Furthermore, the observed link of the inverse
Simpson and Shannon indices with spectral diversity values extended the field of applica-
tion of SVH beyond the previous results reported for coarse and homogeneous vegetation
types as forests [10] and gave new evidence of the benefit of using RS for monitoring
tiny dynamic mosaics as coastal dunes. Similarly, to which was registered by Madonsela
et al. [19] on savannah woodlands, also on coastal dunes we observed a similar relation of
Inverse Simpson index and Shannon values with spectral diversity. Such results suggest
that both: evenness and dominance, have a comparable weight in determining the field vs.
RS variability relationship.

Some studies have characterized alpha spectral diversity analyzing pixel values of
single bands or indices, losing outstanding information supplied by RS images [16,17,90].
The use of multivariate spectral distance [19,24] had allowed us to capitalize PlanetScope
images information for describing coastal landscape variability and to relate it with species
diversity. Moreover, the use of spectral bands combined with the estimates of biomass
(MSAVI2) and soil organic matter content (CI) [88] supported the potential of SVH for
depicting coastal dune vegetation diversity. The consistency of vegetation plots dimension
with PlanetScope pixel size, as well as the chosen indices of plant diversity and spectral
variability [25,91], further enabled the present application on coastal dune landscapes.
Concerning the observed weak goodness-of-fit of linear regressions we considered that
as observed by Schmidtlein et al. [25] also in our case it should be likely due to the low
spectral resolution of RS (4 spectral bands, and 2 spectral indices).

Concerning beta diversity, the analyzed distance decay models disclosing floristic
similarities (Jaccard and Bray–Curtis) and spectral Euclidean distance, showed significant
relationships in all quantile regressions and linear regression considering all dunes cat-
egories. Our results gave evidence of the effectiveness of the distance decay model to
describe coastal landscape beta diversity on natural as well as on invaded dunes. Increasing
values in spectral distance concomitant with decreasing floristic similarity were observed
in other ecosystems characterized by coarser scales (grain and extent) as temperate [90],
tropical [92], and Mediterranean [15] forests. The observed weak decay rates in the linear
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regression model compared to the quantile regressions is probably related with the high
number of zeros in the similarity matrix [21]. It should be noted that the relation among RS
spectral Euclidean distances and floristic similarities computed with species abundance
are stronger than those computed with the presence/absence of data. The moderate decay
rate of 0.99 quantile regressions in both distance decay models is probably due to minor
errors on spatial matching between RS PlanetScope images and the field georeferenced
plots [21,93]. Analyzing beta diversity separately for each dune habitat, we observed
a robust distance decay model on habitat types characterized by continuous vegetation
cover (e.g., Transition dunes-EUNIS-N16 and Invaded vegetation), whereas in the Shifting
dunes (EUNIS-N14) it is weak. This weak decay trend is probably related with the intrinsic
characteristics of shifting dunes given in the field by monospecific or floristically poor
plots (low beta diversity) and in RS images by pixels with different degrees of bare soil and
sparse vegetation (high between pixel distance). Similar to what was reported by Wang
et al. [94] on natural grasslands, the PlanteScope RS spatial resolution seemed too coarse
to discriminate some tiny monospecific formations on shifting dunes, thus the RS beta
diversity included the variability of reflectance values of pixels hosting Shifting dunes
communities with different levels of vegetation cover and bare soil [94].

The SVH analysis for alpha and beta diversity evidenced a similar behavior of Herba-
ceous vegetation with the presence Carpobrotus spp. and natural dune vegetation (Shifting
and Transition coastal dune vegetation). The relation of spectral alpha and beta diversity
on Carpobrotus spp. invaded plots is included in the general pattern of the analyzed herba-
ceous coastal vegetation mosaic (Figure 3, Table 5, see also Table S5, Figure S3). These
general biodiversity trends are most likely related with the coastal dune vegetation gradient
that, on well preserved plots, ranges from monospecific formations [95] to chamaephytic
vegetation intermingled with species-rich therophytic grasslands and on invaded areas
to different invasion strengths [51,53,55]. The slightly large confidence intervals observed
on shifting dunes (Figure 3) is most likely related with the presence on well-preserved
areas of monospecific plots (e.g., Elymus farctus or Ammophila arenaria subsp. australis
formations) with low field alpha diversity. The spectral diversity on the respective pixels is
influenced by open herbaceous vegetation and bare soil depicting a heterogeneous spectral
information and consequently a partially mismatch between field and spectral diversity
values. This partial mismatch among monospecific vegetation plots and the respective RS
heterogeneous pixels promoted the observed wider variability on shifting dunes compared
with the other coastal dune habitats.

Our results underlined the effectiveness of the spectral variability hypothesis for
depicting both alpha and beta diversity levels, thus supporting the application of RS data
for estimating and monitoring diversity on coastal landscapes. The RS assessment of
biodiversity based on the spectral variability hypothesis, which was already proposed for
monitoring other ecosystems [17,22,96], can now be extended to highly heterogeneous and
dynamic mosaics as coastal dunes even on altered conditions due to plant invasions.

The observed relationship between spectral and floristic diversity in natural and
invaded dune vegetation is certainly a first applied outcome of the SVH and support it as a
valid approach to better exploring variations in alpha and beta diversity and to improving
the early warning systems needed to prevent the biodiversity loss.

5. Conclusions

In this study, we provided a first assessment of the relationship between floristic and
spectral RS diversity in Mediterranean coastal dunes’ herbaceous vegetation, extending the
applicability of the SVH also in these dynamic landscapes. Such a relationship was analyzed
for well-preserved European habitats (sensu 92/43/EEC) and on invaded ecosystems, pro-
viding useful insights for improving the biodiversity monitoring and reporting obligations
required by the Habitats Directive and supporting field surveys. This research extended the
field of applicability of RS for alpha and beta diversity assessment on coastal dunes, as well
as gave evidence of the potential of using spectral bands combined with spectral indices
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to better depict ground biodiversity. This result was made possible by the support of
multispectral PlanetScope satellite images (https://www.planet.com/explorer/—accessed
on 28 November 2020) which free access have increased the opportunities of monitoring
the coastal biodiversity at low cost. Further analysis using RS images with higher spectral
resolution (e.g., the open PRISMA (PRecursore IperSpettrale della Missione Applicativa)
data funded by the Italian Space Agency ASI), could enhance the potential for discriminat-
ing different species [12,14], reinforcing the observed alpha field vs. spectral RS diversity
relationship.

These seminal work extends the SVH application to coastal dunes’ taxonomic diversity
assessment and suggests the need for additional research to further explore the potential of
RS for monitoring other facets of coastal dune diversity as the functional and phylogenetic
ones [97,98].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13101928/s1, Table S1. PlanetScope images selected accounting of the geographic and
temporal distribution of field collected vegetation plots. For each image we reported: the satellite,
the date and the hour of acquisition, the product level, the cloud percentage, the zenith angle of
acquisition, the coordinate of the center of each multispectral image, the name of cities and geographic
area covered and the administrative Province in brackets (RM: Rome; LT: Latina; VT: Viterbo), Table
S2. Results of permutation marginal regressions, indicating the significance of estimates in all three
linear regressions (species richness–distance to centroid, Shannon index–distance to centroid, inverse
Simpson index–distance to centroid) after 5000 permutations. p-value: * <0.05; ** <0.01; *** <0.001,
Figure S1. Distance decay models of species similarity, Jaccard (a) and Bray-Curtis (b), versus spectral
distance (spectral pairwise Euclidean distance) considering Shifting dunes (N14 EUNIS category).
The linear regression is described by solid line, the quantile regressions considering four different τ
(from upper to lower lines: 0.99, 0.95, 0.90, 0.75) are reported by dashed lines. Gray dots represent
the sampling plots, Table S3. Results of Distance decay models calculated by linear regression model
and quantile regression at four different τ values (from upper to lower lines: 0.99, 0.95, 0.9, 0.75),
considering the vegetation plots and the pixels of Shifting dunes (N14 EUNIS category). p-value:
* <0.05; ** <0.01; *** <0.001, Figure S2. Distance decay models of species similarity, Jaccard (a) and
Bray–Curtis (b), versus spectral distance (spectral pairwise Euclidean distance) considering the
vegetation plots and the pixels of Transition dunes (N16 EUNIS category. The linear regression is
described by solid line, the quantile regressions considering four different τ (from upper to lower
lines: 0.99, 0.95, 0.90, 0.75) are reported by dashed lines. Gray dots represent the sampling plots, Table
S4. Results of distance decay models calculated by linear regression model and quantile regression at
four different τ values (from upper to lower lines: 0.99, 0.95, 0.9, 0.75), considering the vegetation
plots and the pixels of Transition dunes (N16 EUNIS category). p-value: * <0.05; ** <0.01; *** <0.001,
Figure S3. Distance decay models of species similarity, Jaccard (a) and Bray–Curtis (b), versus spectral
distance (Euclidean distance) considering the vegetation plots and the pixels invaded by Carpobrotus
spp., Invaded category. The linear regression is described by solid line, the quantile regressions
considering four different τ (from upper to lower lines: 0.99, 0.95, 0.90, 0.75) are reported by dashed
lines. Gray dots represent the sampling plots, Table S5. Results of distance decay models calculated
by linear regression model and quantile regression at four different τ values (from upper to lower
lines: 0.99, 0.95, 0.9, 0.75), considering the vegetation plots and the pixels invaded by Carpobrotus
spp., Invaded category. p-value: * <0.05; ** <0.01; *** <0.001.
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