

European Regional Development Fund www.italy-croatia.eu/marless

P
A
G
E
2

P
A
G
E
2

2014 - 2020 Interreg V-A

Italy - Croatia CBC Programme
Call for proposal 2019 Strategic

MARLESS (MARine Litter cross-border awarenESS and

innovation actions)

Priority Axis: Environment and cultural heritage; Specific objective: 3.3 - Improve the

environmental quality conditions of the sea and coastal area by use of sustainable and

innovative technologies and approaches

3.3.4 Model for the calculation of the trajectories of floating

objects released into the sea

Activity 3.3

WP 3

Version: FINAL

Distribution: PUBLIC
Date: 29/06/2023

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/marless

P
A
G
E
2

P
A
G
E
2

PROJECT MARLESS

Work Package: WP3 Monitoring optimization

Activity: Activity 3.3 Marine litter hot spots identification

WP Leader: PP2

Deliverable: D3.3.4 Model for the calculation of the trajectories of floating

objects released into the sea

Version: Final Date: 29/06/2023

Type: Report

Availability: Public

Responsible Partner: PP2

Involved Partner ARPA FVG

Editor: ARPA FVG

Contributors: /

DISCLAIMER: PP2 reflects the project MARLESS views; the IT-HR Programme authorities are not
liable for any use that may be made of the information contained therein.

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

1

Model for the calculation of the

trajectories of floating objects

released into the sea

Activity Deliverable (3.3.4)

WP3
Activity 3.3

Deliverable: D.3.3.4
Version: final
Confidential level: Partnership
Date of release: 29/06/2023

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

2

Introduction
The deliverable D3.3.4 is composed by three outputs: the identification of the model, the
documentation of its features and its implementation; the development and the computational
implementation of the model on the High Performance Computation infrastructure; the simulation
of marine litter trajectories and back trajectories in the Adriatic Sea.
After the identification of the model, the expected spatial resolution has to be computed and then
all the simulations has to be performed considering the advice of the PPs involved to find the better
starting point for the forward and back trajectories. As the forward trajectories have been
performed massively into the deliverable D3.3.2, in this document we are going to focus on the back
trajectories.

The most suitable candidate for this work is the Parcels model.
On the first part of the document, the model features are presented, then on the second part its

implementation and some issues and tests are shown. On the third part the tests of the
backtrajectories are presented with the results obtained for some specific beaches.

Parcels (Probably A Really Computationally Efficient Lagrangian Simulator)
Parcels is a model developed by the OceanParcels project. It consists of a set of Python classes and
methods to create customisable particle tracking simulations using output from Ocean Circulation
models. The model is flexible, enables wide range of applicability and allows to build complex
simulations.
The code is licensed under an open source MIT (Massachusetts Institute of Technology) license.
Parcels model has been chosen since it is a new tool for the Lagrangian particle trajectories
framework, with a community that works on the model and that has provided some tutorials to help
the new users, available in:
https://mybinder.org/v2/gh/OceanParcels/parcels_examples_binder/master?urlpath=lab/tree/pa
rcels_examples/parcels_tutorial.ipynb

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

3

The model documentation is available in:
https://oceanparcels.org/gh-pages/html/. This documentation is equipped with useful tutorial
examples.

Documentation of the model and its features
Below the documentation and the features of the model are presented.

General Parcels structure [1]
It is a good practice to separate the simulation code into the following sections/classes (even if the
simulation is complex, it is good to keep these different steps separate to keep a clear overview and
find bugs in an easier way):

 FieldSet: load and set up the fields necessary to the movement of particles.
The class requires at least the 2D hydrodynamic data that will move the particles (the ‘U’

and ‘V’ wind velocity, but it can be added any other variable). The general method to use is
FieldSet.from_netcdf, which requires filenames, variables and dimensions.

 fname = 'GlobCurrent_example_data/*.nc'
 filenames = {'U': fname, 'V': fname}
 variables = {'U': 'eastward_eulerian_current_velocity',
 'V':'northward_eulerian_current_velocity'}
 dimensions = {'U': {'lat': 'lat', 'lon': 'lon', 'time': 'time'},
 'V': {'lat': 'lat', 'lon': 'lon', 'time': 'time'}}
 fieldset = FieldSet.from_netcdf(filenames, variables, dimensions)
The fields can be in different grids type:

http://www.italy-croatia.eu/
https://oceanparcels.org/gh-pages/html/

European Regional Development Fund www.italy-croatia.eu/acronym

4

Figure 1: grids type. Image taken from [2]

The unstructured grids are not yet supported in Parcels [3], so it is not possible to use the

high resolution currents as in the deliberable D3.3.2.
On a Curvilinear grid, determining the location of each Particle on the grid is more

complicated and therefore takes longer than on a Rectilinear grid. A function is available on
the ParticleSet class, that speeds up the look-up. After creating the ParticleSet, but before

running the ParticleSet.execute(), you can simply call the function
ParticleSet.populate_indices().

pset = ParticleSet.from_list(field_set, JITParticle, lon=lonp, lat=latp)
pset.populate_indices()

 ParticleSet: define the type of particles you want to release, what Variables they have and

their initial conditions. This object requires: the FieldSet on which the particles live; the type

of Particle, that contains the information stored by each particle; the initial conditions for
each Variable defined in the Particle (e.g. the release locations in lon and lat).

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

5

The different Particle types available are the JITParticle and the ScipyParticle, but it is very
easy to create particle class which includes other Variables .

 pset = ParticleSet(fieldset=fieldset, # the fields on which the particles are advected
 pclass=JITParticle, # the type of particles (JIT- or Scipy-Particle)
 lon=28, # release longitudes lat=-33) # release latitudes

 Execute kernels: define and compile the kernels that encode what the particles need to do
each timestep and execute them.
Running a simulation in parcels means executing kernels, little snippets of code that are run
for each particle at each timestep. The most basic kernels are the advection kernels which
calculate the movement of each particle based on the FieldSet in which the ParticleSet lives.
To store the particle data generated in the simulation, it is necessary to define the
ParticleFile to which the output of the kernel execution will be written. Once the ParticleSet
it is defined, the method ParticleSet.execute() can be executed; this method requires the
following arguments:
1. the kernels (which define how particles move) to be executed;

2. the runtime defining how long the execution loop runs (the total length of the run in
seconds), alternatively, the endtime at which the execution loop stops can be defined;

3. the timestep dt at which to execute the kernels;
4. optionally, the ParticleFile object to write the output to.

 output_file = pset.ParticleFile(name="GCParticles.nc", outputdt=3600) # the file
 name and the time step of the outputs
 pset.execute(AdvectionRK4, # the kernel (which defines how particles move)
 runtime=86400*6, # the total length of the run
 dt=300, # the timestep of the kernel
 output_file=output_file)

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

6

Kernels
One of the most powerful features of Parcels is the ability to write custom Kernels.
However, there are some key limitations in writing kernels on your own:

 every Kernel must be a function with only the following arguments (particle, fieldset,

time);
 In order to run successfully in JIT mode, Kernel definitions can only contain the

following types of commands: basic arithmetical operators and assignments; basic
logical operators; if and while loops and break statements.

There are some collections of pre-built kernels that are shown in the following sections.

Collection of pre-built advection kernels:
1. AdvectionAnalytical(particle, fieldset, time): advection of particles using 'analytical

advection' integration: it is based on Ariane/TRACMASS algorithm (see more
information in [4]): the time-dependent scheme is implemented with ‘intermediate

timesteps’ (default 10 per model timestep) and not yet with the full analytical time

integration.
The analytical scheme works with a few limitations: the velocity field should be

defined on a C-grid; it works only for Scipy Particles; since it does not use
timestepping, the dt parameter in pset.execute() should be set to np.inf for forward-

in-time simulations and to -np.inf for backward-in-time ones; for time-varying fields,
only the 'intermediate timesteps' scheme is implemented. Tutorial in [5].

2. AdvectionEE(particle, fieldset, time): advection of particles using Explicit Euler (Euler
Forward) integration. This function needs to be converted to Kernel object before

execution.
3. AdvectionRK4(particle, fieldset, time): advection of particles with fourth-order

Runge-Kutta integration. This function needs to be converted to Kernel object before
execution.

4. AdvectionRK45(particle, fieldset, time): advection of particles using adaptive Runge-
Kutta 4/5 integration. The Times-step dt is halved if the error is larger than tolerance,

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

7

and doubled if the error is smaller than 1/10th of tolerance (tolerance set to 1e-5 * dt
by default).

5. AdvectionRK4_3D(particle, fieldset, time): advection of particles using fourth-order
Runge-Kutta integration including vertical velocity. This function needs to be
converted to Kernel object before execution.

In Figure 2, a schematic comparison between the Analytical Advection scheme and the
fourth order Runge-Kutta scheme is shown.

Figure 2: Illustration of time stepping solutions on an Arakawa C-grid with edges of non-dimensional length=1. Velocities (u, v) across
the four edges are given in numbers at the magenta dots. The blue arrows are the linearly interpolated velocities within the grid.

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

8

Particles are released on the (left) edge. The red lines are pathlines of the analytical solution for these particles. The cyan piecewise

linear lines are the solutions to RK4 timestepping with dt=0.1 . The two types of integration lead to similar solution. Image taken from
[6].

Collection of pre-built advection-diffusion kernels (tutorial in [7]):

1. AdvectionDiffusionEM(particle, fieldset, time): 2D advection-diffusion solved using the
Euler-Maruyama scheme (EM). It assumes that fieldset has as fields Kh_zonal and

Kh_meridional and variable fieldset.dres, setting the resolution for the central difference
gradient approximation (this should be of the order of the local gridsize). The Euler-

Maruyama scheme is of strong order 0.5 and weak order 1. The Wiener increment dW is
normally distributed with zero mean and a standard deviation of sqrt(dt).

2. AdvectionDiffusionM1(particle, fieldset, time): 2D advection-diffusion solved using the
Milstein scheme at first order (M1). It assumes that fieldset has fields Kh_zonal and
Kh_meridional and variable fieldset.dres, setting the resolution for the central difference

gradient approximation (this should be of the order of the local gridsize). This Milstein
scheme is of strong and weak order 1, which is higher than the Euler-Maruyama scheme.

It experiences less spurious diffusivity by including extra computationally cheap
correction terms. The Wiener increment dW is normally distributed with zero mean and

a standard deviation of sqrt(dt). The AdvectionDiffusionM1 kernel should be the default
choice, instead of the previous kernel, as the increased accuracy comes at negligible

computational cost.
3. DiffusionUniformKh(particle, fieldset, time): simple 2D diffusion where diffusivity (Kh)

is assumed uniform. Assumes that fieldset has constant fields Kh_zonal and
Kh_meridional. The constant fields can be added through:

fieldset.add_constant_field(“Kh_zonal”, kh_zonal, mesh=mesh) and
fieldset.add_constant_field(“Kh_meridional”, kh_meridional, mesh=mesh)

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

9

where mesh can be either ‘flat’ or ‘spherical’, latitude and longitude in meters or in
degree respectively. This kernel, assuming null diffusivity gradients, is more efficient.
Since the perturbation due to diffusion is isotropic independent, this kernel contains no
advection and can be used in combination with a separate advection kernel. The Wiener
increment dW is normally distributed with zero mean and a standard deviation of
sqrt(dt).

The advection component of the first two kernels presented above is similar to that of the
Explicit Euler advection kernel (AdvectionEE). If the diffusivity is constant over the entire
domain, the diffusion-only kernel DiffusionUniformKh can be used in combination with an

advection kernel of choice.
Advantages of the method of solving the advection-diffusion equation is that it is accurate

at big time scales and large areas. The method also has two big disadvantages : it is not always
mass conserving and for high concentration gradients, negative concentrations can occur.

[8]
The random walk models are mass conserving, because individual particles are modeled,

which is an advantage. A disadvantage is that a really large number of particles have to be
calculated, to find an accurate solution. The bigger the area or the timespan, the more

particles have to be simulated. Therefore, it is not suitable for large times or big areas. For
example, a dumping of plastics from a ship, can be modeled better with the random walk

model since this is only a small area or small time, but a large concentration gradient.
Instead, to discover a permanent accumulation zone, the advection-diffusion equation is a
better approach. Since a large area and timescale is needed to find permanent zones. [8]

Since the diffusivity here is space-independent, gradients are not calculated, increasing the
efficiency. The diffusion-step can, in this case, be computed after or before advection.

For computing the gradient in diffusivity, dres is needed: the gradients in diffusivities are
approximated by using their values at the particle's location ± dres (in both x and y). A value

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

10

of dres must be specified and added to the FieldSet (e.g. fieldset.add_constant("dres",
0.01)). Currently, it is unclear what the best value of dres is. From experience, dres should
be smaller than the spatial resolution of the data, but within reasonable limits of machine
precision to avoid numerical errors.

Other pre-built kernels

Moreover, there are other pre-built kernels that calculate: sea water density; adiabatic
temperature, from depth in meters and latitude; potential temperature; temperature from
potential temperature at the reference pressure and in situ pressure.

 Output: write and store the output to a NetCDF file. While executing the ParticleSet, the
model stores the data in npy files in an output folder. To take all the data and store them in
a netcdf file, the ParticleFile.export() can be used if you want to keep the folder with npy
files; or ParticleFile.close() if you only want to keep the netcdf file.

 There is some simple basic plotting functionality built into Parcels.

 output_file.export() # or output_file.close()

Implementation on the HPC infrastructure and preliminary tests

Implementation of the model
Below the trial installation in presented.

Parcels code has been installed using Anaconda and the Parcels Conda-Forge package with its latest
release. This package will automatically install (almost) all the requirements for a fully functional

installation of the model.
The model has been installed in the C3HPC cluster. Below, the steps necessary to install the model

in the Linux environment are shown:
1. Install Anaconda's Miniconda following the steps at https://conda.io/docs/user-

guide/install/ selecting the Python-3 version.

http://www.italy-croatia.eu/
https://conda.io/docs/user-guide/install/
https://conda.io/docs/user-guide/install/

European Regional Development Fund www.italy-croatia.eu/acronym

11

2. Start a terminal, activate the root (or base) environment of Miniconda and create an
environment containing Parcels, all its essential dependencies, and the nice-to-have Jupyter,
cartopy, and ffmpeg packages:

 conda activate root
 conda create -n py3_parcels -c conda-forge parcels jupyter cartopy ffmpeg
 conda install -n py3_parcels pytest # if necessary

3. Activate the newly created Parcels environment:

 conda activate py3_parcels

To verify the correct installation of the model, it is required to get a copy of the Parcels tutorials and
examples and the data required:

parcels_get_examples parcels_examples

and then, run the simplest of the examples:
cd parcels_examples

 python example_peninsula.py --fieldset 100 100

Preliminary tests, issues and trial of the implementation of some algorithms

In this section some preliminary tests and issues are shown together with the trial of the
implementation of some algorithms (i.e. the beaching and resuspension one and the windage one) .

Test JIT (Just-In-Time compilation) VS Scipy mode

JIT is almost always faster than the Scipy mode. By the way, Scipy is easier to debug when writing
custom kernels, so can provide faster development of new features. If you want to run Parcels in

Scipy mode there are ways to make Parcels a bit faster shown in this link:

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

12

https://nbviewer.jupyter.org/github/OceanParcels/parcels/blob/master/parcels/examples/tutoria
l_jit_vs_scipy.ipynb (If you want to run in Scipy mode add particle at the end of your Field sampling).

Time test

In this test, with the Peninsula dataset available in the tutorial, the measure of the computational
time is performed using timer module for the particle type JIT and Scipy (see tutorial
tutorial_jit_vs_scipy.ipynb). The test is performed changing only the number of particles and not
the time parameters and the advection kernel.

 For 100 particles:
(100%) Timer root : 1.160e+01 s

(1%) (1%) Timer fieldset creation : 1.583e-01 s
(80%) (80%) Timer scipy : 9.294e+00 s

(19%) (19%) Timer jit : 2.147e+00 s

 For 1000 particles:
(100%) Timer root : 1.318e+02 s

(0%) (0%) Timer fieldset creation : 1.499e-01 s
(97%) (97%) Timer scipy : 1.282e+02 s

(3%) (3%) Timer jit : 3.436e+00 s

 For 10000 particles:
(100%) Timer root : 0:17:10.689796

(0%) (0%) Timer fieldset creation : 0:00:00.097088
(100%) (100%) Timer scipy : 0:17:07.498055

(0%) (0%) Timer jit : 0:00:03.074338

Test: how to combine different Fields for advection into a ‘SummedField’object

If you want to advect particles using a combination of different velocity data sets (for example a
combination of currents and winds) one option would be to write a Kernel that computes the

movement of particles due to each of these flows. However, it is possible to directly combine

http://www.italy-croatia.eu/
https://nbviewer.jupyter.org/github/OceanParcels/parcels/blob/master/parcels/examples/tutorial_jit_vs_scipy.ipynb
https://nbviewer.jupyter.org/github/OceanParcels/parcels/blob/master/parcels/examples/tutorial_jit_vs_scipy.ipynb

European Regional Development Fund www.italy-croatia.eu/acronym

13

different flows (without interpolation) and feed them into the built-in AdvectionRK4 kernel using
the SummedField objects.
In the following code zonal and meridional velocity field on a 1kmx1km grid with a flat mesh are
defined (the zonal velocity is uniform and 1 m/s, and the meridional velocity is zero everywhere).

xdim, ydim = (10, 20)
Uflow = Field('U', np.ones((ydim, xdim), dtype=np.float32),
lon=np.linspace(0., 1e3, xdim, dtype=np.float32),

 lat=np.linspace(0., 1e3, ydim, dtype=np.float32))
Vflow = Field('V', np.zeros((ydim, xdim), dtype=np.float32), grid=Uflow.grid)

fieldset_flow = FieldSet(Uflow, Vflow)

Now, let's define another set of velocities (Ustokes, Vstokes) on a different, higher-resolution grid
(this flow is southward at -0.2 m/s).

gf = 10 # factor by which the resolution of this grid is higher than of the original one.

Ustokes = Field('U', np.zeros((ydim*gf, xdim*gf), dtype=np.float32),
 lon=np.linspace(0., 1e3, xdim*gf, dtype=np.float32),

 lat=np.linspace(0., 1e3, ydim*gf, dtype=np.float32))
Vstokes = Field('V', -0.2*np.ones((ydim*gf, xdim*gf), dtype=np.float32), grid=Ustokes.grid)

fieldset_stokes=FieldSet(Ustokes, Vstokes)

Now we can simply define a FieldSet with a summation of different Fields:

fieldset_sum = FieldSet(U = fieldset_flow.U+fieldset_stokes.U, V=fieldset_flow.V+fieldset_stokes.V)

Then, we can proceed with the ParticleSet structure and the kernel execution.

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

14

Test: how to 'delay' the start of particle advection
If you want to release particles at different times throughout a simulation or at a constant rate from
the same set of locations, there are two ways to delay the start: either by defining the whole
ParticleSet at initialisation and giving each particle its own time or by using the repeatdt argument.

The first and simplest way to delay the start of a particle is to use the time argument for each
particle:

npart = 10 # number of particles to be released
lon = 3e3 * np.ones(npart)
lat = np.linspace(3e3 , 45e3, npart, dtype=np.float32)

time = np.arange(0, npart) * delta(hours=1).total_seconds() # release every particle one
hour later

pset = ParticleSet(fieldset=fieldset, pclass=JITParticle, lon=lon, lat=lat, time=time)
output_file = pset.ParticleFile(name="DelayParticle_time.nc", outputdt=delta(hours=1))

pset.execute(AdvectionRK4, runtime=delta(hours=24), dt=delta(minutes=5),
 output_file=output_file)

output_file.export() # export the trajectory data to a netcdf file

The second method to delay the start of particle releases is to use the repeatdt argument when
constructing a ParticleSet. This is especially useful if you want to repeatedly release particles from

the same set of locations:
npart = 10 # number of particles to be released
lon = 3e3 * np.ones(npart)
lat = np.linspace(3e3 , 45e3, npart, dtype=np.float32)
repeatdt = delta(hours=3) # release from the same set of locations every 3 hours
pset = ParticleSet(fieldset=fieldset, pclass=JITParticle, lon=lon, lat=lat, repeatdt=repeatdt)
output_file = pset.ParticleFile(name="DelayParticle_releasedt", outputdt=delta(hours=1))

pset.execute(AdvectionRK4, runtime=delta(hours=24), dt=delta(minutes=5),
 output_file=output_file)

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

15

If you want at some point to stop the repeatdt, the easiest implementation is to use two calls to
pset.execute():

pset = ParticleSet(fieldset=fieldset, pclass=JITParticle, lon=lon, lat=lat, repeatdt=repeatdt)
output_file = pset.ParticleFile(name="DelayParticle_releasedt_9hrs",

outputdt=delta(hours=1))

first run for 3 * 3 hrs
pset.execute(AdvectionRK4, runtime=delta(hours=9), dt=delta(minutes=5),
 output_file=output_file)

now stop the repeated release

pset.repeatdt = None

now continue running for the remaining 15 hours
pset.execute(AdvectionRK4, runtime=delta(hours=15), dt=delta(minutes=5),

 output_file=output_file)

output_file.export() # export the trajectory data to a netcdf file

Test: how to combine different Fields into a NestedField object

The NestedField object can be used if you have access to different fields that each covers only part
of the region of interest and you have to combine them all together or if you have a field covering
the entire region and another one only covering part of it, but with a higher resolution. The model
will try to successively interpolate the different fields.
The order of the fields in the NestedField matters. In particular, the smallest/finest resolution fields
have to be listed before the larger/coarser resolution fields.

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

16

First we define a zonal and meridional velocity field defined on a high resolution (dx = 100m)
2kmx2km grid with a flat mesh. The zonal velocity is uniform and 1 m/s, and the meridional velocity
is equal to 0.5 *cos(lon /200 *pi/2) m/s.

V1_data = np.cos(lon_g / 200 * np.pi/2)
U1 = Field('U1', np.ones((dim, dim), dtype=np.float32), lon=lon, lat=lat)
V1 = Field('V1', V1_data, grid=U1.grid)

Now we define the same velocity field on a low resolution (dx = 2km) 20kmx4km grid.

V2_data = np.cos(lon_g / 200 * np.pi/2)
U2 = Field('U2', np.ones((ydim, xdim), dtype=np.float32), lon=lon, lat=lat)

V2 = Field('V2', V2_data, grid=U2.grid)

We now combine those fields into a NestedField and create the fieldset:
U = NestedField('U', [U1, U2])

V = NestedField('V', [V1, V2])
fieldset = FieldSet(U, V)

Test with ROMS current data without wind field
In this first test the nertCDF ROMS current data of the 09/09/2021 are used without the addition of

the wind field.
Firstly, the U e V wind are defined together with their dimensions. In the ParticleSet, 5 particles are

released in a line that has the start and finish position as above. The particles are advected with the
AdvectionRK4 kernel.

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

17

ERROR using pclass=ScipyParticle
Exception ignored in: <function ParticleFileSOA.__del__ at 0x2b85a08208b0>

Traceback (most recent call last):
 File "/u/arpa/farrisc/miniconda3/envs/py3_parcels/lib/python3.9/site-

packages/parcels/particlefile/particlefilesoa.py", line 40, in __del__
 File "/u/arpa/farrisc/miniconda3/envs/py3_parcels/lib/python3.9/site-
packages/parcels/particlefile/baseparticlefile.py", line 235, in __del__
 File "/u/arpa/farrisc/miniconda3/envs/py3_parcels/lib/python3.9/site-
packages/parcels/particlefile/baseparticlefile.py", line 240, in close

 File "/u/arpa/farrisc/miniconda3/envs/py3_parcels/lib/python3.9/site-
packages/parcels/particlefile/particlefilesoa.py", line 125, in export

TypeError: 'NoneType' object is not callable

ERROR using pclass=JITParticle
INFO: Compiled ArrayJITParticleAdvectionRK4 ==> /tmp/parcels -

19004/libf508b41eaa796e8d4e4c7d407145d1fd_0.so
Exception ignored in: <function ParticleFileSOA.__del__ at 0x2abc4a80a8b0>

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

18

Traceback (most recent call last):
 File "/u/arpa/farrisc/miniconda3/envs/py3_parcels/lib/python3.9/site-
packages/parcels/particlefile/particlefilesoa.py", line 40, in __del__
 File "/u/arpa/farrisc/miniconda3/envs/py3_parcels/lib/python3.9/site-
packages/parcels/particlefile/baseparticlefile.py", line 235, in __del__
 File "/u/arpa/farrisc/miniconda3/envs/py3_parcels/lib/python3.9/site-
packages/parcels/particlefile/baseparticlefile.py", line 240, in close
 File "/u/arpa/farrisc/miniconda3/envs/py3_parcels/lib/python3.9/site-
packages/parcels/particlefile/particlefilesoa.py", line 125, in export
TypeError: 'NoneType' object is not callable

WARNING: compiled library already freed.
Exception ignored in: <function KernelSOA.__del__ at 0x2abc4a7f00d0>

Traceback (most recent call last):
 File "/u/arpa/farrisc/miniconda3/envs/py3_parcels/lib/python3.9/site-

packages/parcels/kernel/kernelsoa.py", line 157, in __del__
 File "/u/arpa/farrisc/miniconda3/envs/py3_parcels/lib/python3.9/site-

packages/parcels/kernel/basekernel.py", line 99, in __del__
 File "/u/arpa/farrisc/miniconda3/envs/py3_parcels/lib/python3.9/site-

packages/parcels/kernel/basekernel.py", line 199, in remove_lib
 File "/u/arpa/farrisc/miniconda3/envs/py3_parcels/lib/python3.9/site-

packages/parcels/kernel/basekernel.py", line 220, in get_kernel_compile_files
 File "/u/arpa/farrisc/miniconda3/envs/py3_parcels/lib/python3.9/site-
packages/parcels/tools/global_statics.py", line 35, in get_cache_dir
 File "/u/arpa/farrisc/miniconda3/envs/py3_parcels/lib/python3.9/pathlib.py", line 1072, in
__new__
 File "/u/arpa/farrisc/miniconda3/envs/py3_parcels/lib/python3.9/pathlib.py", line 697, in
_from_parts

 File "/u/arpa/farrisc/miniconda3/envs/py3_parcels/lib/python3.9/pathlib.py", line 678, in
_parse_args

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

19

TypeError: isinstance() arg 2 must be a type or tuple of types

First problem solved
The error has been solved replacing the output_file definition inside the pset.execute() command.

#output_file0 = pset.ParticleFile(name="tutorial1.nc", outputdt=timedelta(hours=1))
#pset.execute(AdvectionRK4,
runtime=timedelta(days=2),
dt=timedelta(minutes=15),
output_file=output_file0,
recovery={ErrorCode.ErrorOutOfBounds: DeleteParticle})

pset.execute(AdvectionRK4 , runtime=timedelta(days=3), dt=timedelta(minutes=15),

output_file=pset.ParticleFile(name='atutorial1.nc', outputdt=timedelta(minutes=15)),
 recovery={ErrorCode.ErrorOutOfBounds: DeleteParticle})

Second problem solved

We decided to use the original ROMS netcdf output.

The Particle were not advected, the problem has been solved defining in a different way the lat and
lon variables: instead of using the dimension nx and ny the model needs the variables defined as

‘lat’ and ‘lon’ that are both function of nx and ny.

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

20

For curvilinear grids, the parcels’s tutorial uses a mesh mask but for our dataset is not needed.

Test number 1
After having read correctly the netcdf file with the sea surface currents, a test with the release of

10 particles for 3 days has been performed. The 10 particles have the start points fixed. Some
different simulations have been done in order to test if with the AdvectionRK4 kernel, a kernel with

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

21

no diffusion and any other stochastic components, all the particles’ end points were the same. The
test has been passed.

Test number 2

A second test is performed for the AdvectionRK4 kernel: 2 simulations with the release of 10
particles for 3 days are done, one for the forward mode and one for the backward mode. The aim
of the test is to verify if, taking the final positions of the forward simulation and putting those
position as initial position of the backward simulation, the final positions of the backward simulation
and the initial positions of the forward one coincide. Looking to the results and making the
difference between these points, the error is of about 0.00001° (i.e. of about 1 m).

Problem with particles off domain

Particles that go outside the domain lose their id number and the latitude and longitude are defined
as Nan values. Moreover, the id becomes 0.

Time test

1000 particles from Isonzo river
#for diffusion
kh_zonal = 1 #in m^2/s

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

22

kh_meridional = 1 #in m^2/s both values are converted to degrees/s under the hood since
the mesh is spherical and not flat

fieldset.add_constant_field("Kh_zonal", kh_zonal, mesh=mesh)
fieldset.add_constant_field("Kh_meridional", kh_meridional, mesh=mesh)
pset = ParticleSet.from_line(fieldset, pclass=JITParticle, size=1000, start=(13.5597,45.7246),

 finish=(13.5597,45.7246))
pset.execute(pset.Kernel(AdvectionRK4) + DiffusionUniformKh , runtime=timedelta(days=3),
 dt=timedelta(minutes=15),
 output_file=pset.ParticleFile(name='tutorial1_Isonzo.nc',
 outputdt=timedelta(minutes=15))

Results:
real 1m20.150s

user 0m35.221s
sys 0m6.173s

10000 particles from Isonzo river
Same code as above but with size= 10000.

Results:
real 1m13.021s

user 0m29.346s
sys 0m6.597s

with these information:
INFO: Compiled ArrayJITParticleAdvectionRK4DiffusionUniformKh ==> /tmp/parcels-
19004/libce7308433d4103aa799d818350013660_0.so
INFO: Temporary output files are stored in out-DTFHMSVT.
INFO: You can use "parcels_convert_npydir_to_netcdf out-DTFHMSVT" to convert these to a
NetCDF file during the run.

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

23

100% (259200.0 of 259200.0)
|##| Elapsed Time: 0:00:02
Time: 0:00:02

Test of constant releases from point-like and segment-like sources
Other tests have been performed considering particles released at a constant rate from the same
location. For these tests, the COPERNICUS currents data is used. One test is performed considering
a point source near the Isonzo’s mouth releasing every 1 minute for 1 hour 10 particles and
considering a total amount of 48 hours for the simulation or every 1 minute for 48 hours. A similar
test is performed considering a release from a segment, always near the Isonzo’s mouth.
Moreover, it is possible to release particle on polygonal chains creating specific arrays for latitude
and longitude that reproduce the geometry required and go on with the release from_list.

Trial of the implementation of the beaching-resuspension algorithm

Beaching

A simple beaching model is implemented as a stochastic process in the coastal zone in order to take

into account for the uncertainty/unreliability of the ocean current data in land adjacent ocean cells.
For every time step the beaching probability pB is calculated as:

𝑝𝐵 = {
𝑖𝑓 𝑑 ≤ 𝐷 𝑝𝐵 = 1 − exp (−

𝑑𝑡

𝜆𝐵

)

𝑖𝑓 𝑑 > 𝐷 𝑝𝐵 = 0

1

Where d is the distance of a particle to the nearest coastline, D is a predefined distance to the shore
within we decide beaching to occur, dt is the integration timestep and λB is the characteristic
timescale of plastic beaching (the number of days that a particle must spend within beaching zone
such that there is a 63.2% chance that the particle has beached [9]).
In the Mediterranean, analysis of GPS trajectories of drifter buoys suggests λB =76 days, and an
inverse modeling study suggests λB =26 days for plastic debris [9].

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

24

Resuspension
Also the resuspension is implemented as a stochastic process, where the resuspension probability
pR of a beached particle is define as:

𝑝𝑅 = 1 − exp (−
𝑑𝑡

𝜆𝑅

)

2

Where dt is the integration timestep and λR is the characteristic timescale of plastic resuspension.
A research has studied the resuspension timescales of plastic object with different sizes and found
a range of λR= 69-273 days for this parameter [9]. When a particle beaches, its last position is saved

and if the particle resuspends it continues its trajectory from this last position.

To implement the beaching-resuspension algorithm is necessary to construct a field with all the
distances from the nearest shore dependent from latitude and longitude. This is done with the
software QGIS. Firstly, we take a .shp of the coastal map then this file is converted into a raster file.
After that, with the Proximity option from raster analysis the distance from the coast is calculated
for all the points enclosed between the maximum and the minimum latitude and longitude of the
land map. This distance is calculated in degrees and it is saved in a netCDF file.
Briefly, the algorithm reads the distance of every particle in each timestep, if this distance is less
than the D chosen in the equation 1 the beaching probability is calculated and random number is
generated, if this number is higher than the pB so the particle is flagged as beached and all the
possible displacements are no more calculated for this particle. As far as the resuspension algorithm
is concerned, for all the particles flagged as beached is calculated the probability in equation 2, again
a random number is generated and if this number is higher than the pR the particle can be advected
again and the flag beached is removed.
Since the particle class JIT has some limitations for the implementation of new kernels, we have
switched to the Scipy class.

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

25

Problem on the diffusion kernel
We noticed that, after running the simulation with the same parameters for more than one time,
the final position are always the same. So we decided to run some test on the tutorial

parcels_tutorial.ipynb on the binder of the site http://www.oceanparcels.org.
We ran the same simulation multiple times and every 5 times we restarted the Jupyter kernel. In
appedix the code is presented in Jupyther code for diffusion test.

First notebook kernel restart

First simulation:
P[0](lon=272499.468750, lat=100960.531250, depth=0.000000, time=518400.000000)
P[1](lon=261695.750000, lat=317240.531250, depth=0.000000, time=518400.000000)
Second simulation:
P[2](lon=221895.500000, lat=113273.695312, depth=0.000000, time=518400.000000)

P[3](lon=280482.750000, lat=359012.812500, depth=0.000000, time=518400.000000)
Third simulation:

P[4](lon=249686.281250, lat=73855.156250, depth=0.000000, time=518400.000000)
P[5](lon=212862.156250, lat=356235.312500, depth=0.000000, time=518400.000000)

Fourth simulation:
P[6](lon=231850.765625, lat=82502.718750, depth=0.000000, time=518400.000000)

P[7](lon=244108.359375, lat=323376.062500, depth=0.000000, time=518400.000000)
Fifth simulation:

P[8](lon=261284.984375, lat=76569.210938, depth=0.000000, time=518400.000000)
P[9](lon=263710.937500, lat=378645.875000, depth=0.000000, time=518400.000000)

Second notebook kernel restart

First simulation:
P[0](lon=272499.468750, lat=100960.531250, depth=0.000000, time=518400.000000)

P[1](lon=261695.750000, lat=317240.531250, depth=0.000000, time=518400.000000)

http://www.italy-croatia.eu/
http://www.oceanparcels.org/

European Regional Development Fund www.italy-croatia.eu/acronym

26

Second simulation:
P[2](lon=221895.500000, lat=113273.695312, depth=0.000000, time=518400.000000)
P[3](lon=280482.750000, lat=359012.812500, depth=0.000000, time=518400.000000)
Third simulation:
P[4](lon=249686.281250, lat=73855.156250, depth=0.000000, time=518400.000000)
P[5](lon=212862.156250, lat=356235.312500, depth=0.000000, time=518400.000000)
Fourth simulation (here I’ve re-run also the fieldset):
P[6](lon=229463.656250, lat=82117.406250, depth=0.000000, time=518400.000000)
P[7](lon=216254.078125, lat=336935.812500, depth=0.000000, time=518400.000000)
Fifth simulation:

P[8](lon=272024.125000, lat=91632.546875, depth=0.000000, time=518400.000000)
P[9](lon=269014.906250, lat=329866.125000, depth=0.000000, time=518400.00000)

Third notebook kernel restart
First simulation:
P[0](lon=272499.468750, lat=100960.531250, depth=0.000000, time=518400.000000)
P[1](lon=261695.750000, lat=317240.531250, depth=0.000000, time=518400.000000)

Second simulation:
P[2](lon=221895.500000, lat=113273.695312, depth=0.000000, time=518400.000000)

P[3](lon=280482.750000, lat=359012.812500, depth=0.000000, time=518400.000000)
Third simulation:

P[4](lon=249686.281250, lat=73855.156250, depth=0.000000, time=518400.000000)
P[5](lon=212862.156250, lat=356235.312500, depth=0.000000, time=518400.000000)
Fourth simulation:
P[6](lon=231850.765625, lat=82502.718750, depth=0.000000, time=518400.000000)
P[7](lon=244108.359375, lat=323376.062500, depth=0.000000, time=518400.000000)
Fifth simulation:
P[8](lon=261284.984375, lat=76569.210938, depth=0.000000, time=518400.000000)
P[9](lon=263710.937500, lat=378645.875000, depth=0.000000, time=518400.000000)

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

27

From these tests it can be noticed that with the first and third notebook kernel restart the final
positions are exactly the same for every simulation. With the second restart the final positions are
different after the simulation in which we’ve re-run also the fieldset.
The problem is solved using a different algorithm for the diffusion (presented below); probably the
problem was the function ParcelsRandom.normalvariate(0, math.sqrt(math.fabs(particle.dt)).
def BrownianMotion2D(particle, fieldset, time):
 """Kernel for simple Brownian particle diffusion in zonal and meridional direction.
 Assumes that fieldset has fields Kh_zonal and Kh_meridional

 """
 r = 1/3.
 kh_meridional = fieldset.Kh_meridional[time, particle.depth, particle.lat, particle.lon]

 lat_p = particle.lat + random.uniform(-1., 1.) * math.sqrt(2*math.fabs(particle.dt)*kh_meridional/r)
 kh_zonal = fieldset.Kh_zonal[time, particle.depth, particl e.lat, particle.lon]
 lon_p = particle.lon + random.uniform(-1., 1.) * math.sqrt(2*math.fabs(particle.dt)*kh_zonal/r)
 particle.lon=lon_p

 particle.lat=lat_p

Windage implementation
The windage implementation is performed adding the wind fields from the WRF netCDF files with

the function add_field that adds the new fields to the current fieldset. It is necessary to perform a
unit conversion is such a way to have the m/s in degrees/s, conversion that happens under the hood

for the current fields. The functions used are: GeographicPolar for the U field and Geographic for
the V one. The wind fields are scaled with a random factor of 1%-4% every dt of integration for each
particle.

Test marless_parcels version 0.1
The 0.1 version of marless_parcels has different implemented kernels: the advection one (with first

or fourth Runge-Kutta method’s order), the windage one (with with first or fourth Runge-Kutta
method’s order), the diffusion one, and the beaching one. In this version the beaching kernel is kept

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

28

simple (or basic): every particle that, after the execution of all the kernels, has a distance from the
coast less than or equal to zero is flagged as beached. There is no refloating kernel in this version,
so every beached particle stays in its last position without be advected no more.
In this test we have studied the execution time of a simulation of 48 hours with a release firstly in
open sea. We have examined the first and the fourth Runge-Kutta method’s order for the advection
and the windage kernels with different time interval of integration (1, 5, 10 and 15 minutes) and
different number of particles to be released instantaneously (10, 100 and 1000).
In the following the schematic summary of the test and the tables of the results are shown.

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

29

dt (min) n rk tot beached time time in seconds

1 10 1 3 00:06:56 416

1 100 1 20 01:09:44 4184

1 1000 1 187 11:22:22 40942

5 10 1 1 00:01:28 88

5 100 1 16 00:15:14 914

5 1000 1 187 02:11:32 7892

10 10 1 3 00:00:45 45

10 100 1 23 00:07:27 447

10 1000 1 176 01:10:05 4205

15 10 1 2 00:00:33 33

15 100 1 17 00:04:35 275

15 1000 1 165 00:46:47 2807

dt (min) n rk tot beached time time in seconds

1 10 4 nan 00:08:22 502

1 100 4 nan 01:21:52 4912

1 1000 4 nan 13:06:03 47163

5 10 4 nan 00:01:45 105

5 100 4 nan 00:17:14 1034

5 1000 4 nan 02:41:38 9698

10 10 4 nan 00:00:55 55

10 100 4 nan 00:08:35 515

10 1000 4 nan 01:23:03 4983

15 10 4 nan 00:00:38 38

15 100 4 nan 00:05:46 346

15 1000 4 nan 00:53:24 3204

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

30

The tables of the results show the time interval of integration in minutes, the number of particles,
the Runge-Kutta method’s order, the total number of beached particles, the duration of the
simulation in the format hours:minutes:seconds and in seconds.
Considering the ratios of the time over the number of particles, shown in the following tables, fixing
the dt this ratio is independent from the number of particles, instead fixing the n it is dependent
from the time interval of integration.

dt (min)
1 5 10 15

10 41.60000 8.80000 4.50000 3.30000

100 41.84000 9.14000 4.47000 2.75000

1000 40.94200 7.89200 4.20500 2.80700

rk1: time (sec) / n

n

dt (min)
1 5 10 15

10 50.20000 10.50000 5.50000 3.80000

100 49.12000 10.34000 5.15000 3.46000

1000 47.16300 9.69800 4.98300 3.20400

rk4: time (sec) / n

n

dt (min)
1 5 10 15

10 30.0% 10.0% 30.0% 20.0%

100 20.0% 16.0% 23.0% 17.0%

1000 18.7% 18.7% 17.6% 16.5%

rk1: beached particles / released particles

n

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

31

Trajectory extraction from models output file
The netCDF file structure of the output of the simulation with the GNOME and Parcels models is
shown in the following figures.
The output of the GNOME model has two dimensions: time and data. The latter represents the
number of particle times the time steps. Since the variables are dependent only from one dimension
the best way to extract the data is to use a FORTRAN90 program with the help of the netcdf libraries.
On the other hands, the output of the Parcels model has two dimensions (obs and traj) and each
variable is dependent from both the dimensions. Nevertheless the more efficient way to extract the
data is using a FORTRAN90 program with the netcdf libraries.

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

32

Figure 3: netCDF file structure of the output of the GNOME model simulation.

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

33

Figure 4: netCDF file structure of the output of the Parcels model simulation.

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

34

Time test for the data extraction
As far as the GNOME simulation output is concerned, the FORTRAN90 program is implemented in
two ways depending on the possibility of the particle counts to change during the simulation.
The first way works if the number of particles doesn’t change, the second one if it changes; in the
following table the results of a time test for the extraction with the two different ways are shown
for 1000 and 10000 particles with 289 time-steps per particle.

Number of particles Time – first way Time – second way

1000 1 m 37.200 s 4 m 22.256 s
10000 (node = 1 ppn = 2) Walltime: 22 m 4 s Walltime: 5 h 1 m 26 s

Another time test is performed with a GMT and a NCL programs that plot all the trajectories
together. In the following table the results of this time test are shown:

Number of particles GMT NCL

1000 1 m 16.742 s Walltime = 26 m 27 s

10000 Walltime: 37 m 12 s -

With pyGNOME with a continuous release of particles, it is necessary to implement a third way to
extract the data because for every timestep there are a new amount of particle added in the particle
count. The program is written in FORTRAN90 and use the netcdf libraries.

Backtrajectories

Since in the model there isn’t the possibility to insert a map, it is necessary to find a way to insert
the information of the coastlines.

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

35

The best solution found is to construct a map of proximity, namely a map in which in every point
the value of the shorter distance from the coast is stored.
This is performed with the software QGIS. The generic map has to be inserted as a shapefile, then it
is necessary to merge all the elements (coastlines of the continental parts and the coastlines of the
islands) in one single element. Afterwards, the shapefile has to be rasterize and then it is possible
to implement the function Proximity (raster distance).
The result is shown in the following image on the right.

After that, the information is stored in a netcdf file that is going to be imported in the model.
To simulate the backtrajectories, the model moves the lagrangian elements with the marine
currents, the wind field and, with a simple beaching algorithm, these particles are beached. This
simple beaching algorithm works reading the information of the distance from the coast in every
timestep, as soon as the particles reach a distance equal to zero they stop in that point until the

end.
In the following section some tests are going to be presented.

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

36

Preliminary tests
For all the results presented, the simulations have a duration of 48 hours, with an instantaneous
release of 10 particles in the position lat= 45.670411, lon=13.703133 (in the front of the Trieste’s
harbour). The simulations start on the 30 of November 2017 and end on the 28 of November
2017. The Runge-Kutta order for the windage and the advection is changed together with the dt of
integration. For every set of parameters 3 different simulations are performed and the time spent
is stored.

Runge-Kutta order Dt Time spent

Windage: 4 Advection: 4 5 minutes 1 min 20 sec

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

37

Runge-Kutta order Dt Time spent

Windage: 4 Advection: 4 10 minutes 40 sec

Runge-Kutta order Dt Time spent

Windage: 4 Advection: 4 15 minutes 35 sec

Runge-Kutta order Dt Time spent

Windage: 1 Advection: 1 5 minutes 22 sec

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

38

Runge-Kutta order Dt Time spent

Windage: 1 Advection: 1 10 minutes 18 sec

Runge-Kutta order Dt Time spent

Windage: 1 Advection: 1 15 minutes 15 sec

Runge-Kutta order Dt Time spent

Windage: 1 Advection: 4 5 minutes 23 sec

Runge-Kutta order Dt Time spent
Windage: 1 Advection: 4 10 minutes 19 sec

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

39

Runge-Kutta order Dt Time spent
Windage: 1 Advection: 4 15 minutes 16 sec

For the following tests the dt is fixed to 15 minutes.

Runge-Kutta order Dt Time spent
Windage: 4 Advection: 1 15 minutes 35 sec

From these tests, it can be noticed that with the Runge-Kutta order 4, the trajectories present more
steps in their path. Moreover, it can be seen that the windage seems to have a major influence on
the transport that can be related to a particular meteorological situation. For this reason these test

are performed for another period of time, starting from the 30 of June 2018 back to the 28 of June

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

40

2018. For these test only one simulation is performed for each set of parameter and the dt is kept
fixed to 15 minutes.

Runge-Kutta
order

Time
spent

Runge-Kutta
order

Time
spent

Runge-
Kutta order

Time
spent

Runge-Kutta
order

Time
spent

W:1 A:1 41 sec
W:
4

A:4 43 sec
W:
1

A:4 41 sec W:4 A:1 45 sec

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

41

The following tests are performed with a dt of 5 minutes, with a Runge-Kutta order of 4 for windage
and advection. The simulations start on the 30 of June 2018 and end on the 25 of June 2018. In
these tests the windage, the advection and the diffusion are deactivated in turn in order to test the
transport algorithms. The starting point of release is lat = 41.862331, lon = 17.852863, with an
instantaneous release of 10 particles.

Advection + windage + diffusion
Time spent: 3 min

23 sec
Advection + windage

Time spent: 3 min
40 sec

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

42

Advection
Time spent: 1

min 8 sec
Windage

Time spent: 2 min
45 sec

The windage is the algorithm that consumes more time because for every time step the model picks
a random number between 1 and 4 in order to set a the 1%-4% of the wind speed to compute the
windage. With the diffusion there is a spread of the particles at the end that is about 30 km.

The following simulation is performed with a dt of 5 minutes, with the Runge-Kutta at the fourth
order and for a duration of 30 days starting from the 30 of June 2018 back in time. There is an
instantaneous release of 10 particles from the point lat = 41.862331, lon = 17.852863.

The time spent for this simulation is of 16 minutes.

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

43

Tests: same parameters, same start time but different positions
Punctual release of 5 particle per point; start time: 24 October 2018 00:30UTC; dt 15 minutes;
Runge-Kutta fourth order for windage and advection; minimum distance from the coast: 500 m.

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

44

lat_start = 43.679565

lon_start = 13.2963755

all beached after 2 minutes

lat_start = 43.6809006

lon_start = 13.3053234

all beached after 2 minutes

lat_start = 43.6864559

lon_start = 13.3057096

all beached after 9 minutes

lat_start = 43.6863007

lon_start = 13.2950666

all beached after 2 minutes

lat_start = 43.6836007

lon_start = 13.3002594

all beached after 3 minutes

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

45

Tests: same parameters, release from a polygon, different start times

Release from a polygon 1km x 1 km, identified by 2 diagonal segments both with a line-release of 5
particle, so a total release of 10 particles per run. Four different start times are taken: one per each

season. Runge-Kutta fourth order for windage and advection; dt of 15 minutes; minimum distance
from the coast: 500 m.

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

46

Winter: start time 20 February 2018 Spring: start time 20 May 2018

All beached after 6 minutes All beached after 1 minute

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

47

Summer: start time 20 August 2018 Autumn: start time 24 October 2018

All beached after 7 minutes All beached after 4 minutes

Tests: continuous release for 2 months

Release from a point line source: lat = 43.6864559, lon = 13.3057096; continuous release of 5
particles/day; Runge-Kutta fourth order for windage and advection; dt of 15 minutes:
Time spent for a simulation of 2 months: 88 minutes.

Tests: 334 days of simulation from the Bosco Isola Lesina beach in Puglia
Time start of the back trajectories: 2018-10-25 00:30:00 UTC. Fourth Runge Kutta order for

advection and windage.

Dt of integration: 15 minutes; continuous release of 5 particles per day in each polygon diagonal (as
you can see on the following image, the polygon is a square with dimension of 500x500m).

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

48

Time spent for the simulations: 7 hours; NetCDF output dimension: 513 MB. Time spent to extract
data: 1 minute; final ASCII file dimension: 220 MB.

On the following picture, all the possible source points found on the last time step of the simulation

are shown. There is no accumulation points, all the shown data represent a single point not a
superposition of different ones. The spatial resolution of the sources points is of the order of 1 meter

(precisely, the minimum distance between two coordinates is of 0.83 meters).

500 m

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

49

These results are going to be analysed with a Machine Learning clustering algorithm to find the
higher probability areas in which the sources can be found. In the following section, the different
clustering algorithm are going to be presented.

Valuation of the different Machine Learning Clustering algorithm

We need to use an unsupervised clustering algorithm as we don’t have the ground truth to compare
the clustering algorithm to the true labels to estimate its performance. So we want to try to

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

50

investigate the structure of the data by grouping the coordinate data points into individual
subgroups.

K-Means algorithm

In K-Means algorithm each data point belongs to only one group so there is non-overlapping
clusters. It assigns data points to a cluster such that the sum of the squared distance between the
data points and the cluster’s centroid (that is defined as the arithmetic mean of all the data points
that belong to that cluster) is at the minimum. The less variation we have within clusters, the more
homogeneous the data points are within the same cluster.
The algorithm needs to have the number of clusters specified. The first test is performed with the
choice of 12 clusters; on the following image the result is shown together with the table that shows
the sources counts for each colour.

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

51

Since K-Means requires the number of clusters as an input and doesn’t learn it from data, there is
no right answer in terms of the number of clusters that we should have. To evaluate the algorithm
performance we used the method called Elbow method.
This method gives us an idea on what a good number of clusters would be based on the sum of
squared distance between data points and their assigned clusters’ centroids. The following two
images show the observed plot and the expected one. As it is can be noticed, the elbow method fail
to find the number of possible clusters as it finds the elbow exactly at the beginning of the plot data,
the curve is not monotonically decreasing and there is not any elbow or has an obvious point where

the curve starts flattening out.

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

52

Observed plot Expected plot

In conclusion, we can deduce that this algorithm is not the most suitable for our points; this can be
inferred to the fact that it is not good in capturing structures that don’t have a spherical -like shape.
Moreover, K-Means is not an ideal algorithm for latitude-longitude data because it minimizes
variance, not geodetic distance. There is substantial distortion at latitudes far from the equator.

A more precise approach is to use the Silhouette Score, which is the mean silhouette coefficient

over all the points. The Silhouette Coefficient s for a single sample is given as:

𝑠 =
𝑏 − 𝑎

max (𝑎, 𝑏)

Where, a is the mean distance between a sample and all other points in the same class , and b is the

mean distance between a sample and all other points in the next nearest cluster. Then, the
Silhouette Coefficient for a set of samples is given as the mean of the Silhouette Coefficient for each

sample.

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

53

The silhouette coefficient can vary between -1 and +1: a coefficient close to +1 means that the
sample is well inside its own cluster and far from other clusters, while a coefficient close to 0 means
that it is close to a cluster boundary, and finally a coefficient close to -1 means that the sample may
have been assigned to the wrong cluster.

Selecting the number of clusters between 2 and 100 clusters (K), the following image shows the
results of the silhouette score; the best value to put as number of clusters is the maximum value of
this curve.
In this case the maximum silhouette score is obtained for 7 clusters.

With 7 clusters this is the clusterization obtained:

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

54

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

55

DBSCAN (Density-based spatial clustering of applications with noise) algorithm
With this algorithm you don’t have to specify the number of clusters to use it and it is a density-
based clustering algorithm. In density-based clustering, data is grouped by areas of high

concentrations of data points surrounded by areas of low concentrations of data points. The
algorithm finds the places that are dense with data points and calls those clusters.

The great thing about this is that the clusters can be of any shape. You aren't constrained to
expected conditions. The clustering algorithms under this type don't try to assign outliers to clusters,

so they get ignored.
The algorithm uses two parameters:

 eps: it defines the neighbourhood around a data point i.e. if the distance between two points

is lower or equal to ‘eps’ then they are considered neighbours. If the eps value is chosen too

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

56

small then large part of the data will be considered as outliers. If it is chosen very large then
the clusters will merge and the majority of the data points will be in the same clusters.

 minPts: Minimum number of neighbours (data points) within eps radius. Larger the dataset,
the larger value of minPts must be chosen. Larger values are usually better for data sets with
noise.

To evaluate the best value for these parameters, a heatmap that relates the eps parameter to the
minPts (N) shows the number of clusters found for each pair of parameter.
Also in this case we need to know approximately how many clusters there are in each dataset in
order to choose the most suitable pair of parameters. So we chose to set eps=10 (km) and minPts
=3. The algorithm found 21 clusters. The image shown the different clusters with their centroid and
also the noise points found (label -1, colour white).

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

57

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

58

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

59

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

60

This algorithm is more arduous to tune; the parameters like the epsilon is not so intuitive to set, so

it’s more difficult to choose good initial parameter values for this algorithm.

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

61

We tried to set the eps parameter computing the silhouette score as in the case of the algorithm K-
means. The results are shown on the following plots:

We obtained the maximum silhouette score with an eps of 22 km.

After that we decided to use the same procedure to find the best minPts parameters. The results
are shown below:

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

62

In the theory, it is suggested to set the minPts to a value that is 2 times the dimension of the dataset:
2*D, thus in this case, since the dataset is in 2D, the result is 4. With a minPts set to 4, we obtained
the following clusterization result (12 clusters):

It can be noticed from the plot above, that the algorithm find a very large cluster (the green points
that takes the area from Abruzzo and Puglia.
But setting this parameter to 5 as obtained calculating the silhouette score, we obtained 11 clusters
and the above mentioned cluster divided into 2 parts, thing that we prefer.

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

63

OPTICS (Ordering Points to Identify the Clustering Structure) algorithm
This algorithm can be seen as a generalization of DBSCAN that replaces the eps parameter with a

maximum value that mostly affects performance. MinPts becomes the minimum cluster size to find.

It produces a hierarchical clustering instead of the simple data partitioning that DBSCAN produces.
It's a density-based algorithm similar to DBSCAN, but it's better because it can find meaningful

clusters in data that varies in density. It does this by ordering the data points so that the closest
points are neighbours in the ordering. This makes it easier to detect different density clusters.

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

64

The problem of this method is that it keeps the number of elements inside the cluster closer to the
minimum cluster size, so each clusters have nearly the same amount of data.

Mean-Shift clustering algorithm
This algorithm is particularly useful for handling images and computer vision processing.
Mean-shift finds clusters without an initial number of clusters being set.
It is a non-parametric, density-based clustering algorithm, it is particularly useful for datasets where
the clusters have arbitrary shapes and are not well-separated by linear boundaries.
The basic idea behind is to shift each data point towards the mode (i.e., the highest density) of the
distribution of points within a certain radius. The algorithm iteratively performs these shifts until
the points converge to a local maximum of the density function. These local maxima represent the
clusters in the data.
Mean-shift builds upon the concept of kernel density estimation. It is a method to estimate the
underlying distribution also called the probability density function for a set of data. It works by
placing a kernel on each point in the data set. Adding up all of the individual kernels generates a
probability surface example density function. Depending on the kernel bandwidth parameter used,

the resultant density function will vary.
With our dataset it finds 14 clusters; on the following images you can see the number of clusters

and the clusters with their centroids.

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

65

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

66

On the following image the result is shown together with the table that shows the sources counts
for each color.

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

67

Affinity Propagation clustering algorithm and other algorithms
With this algorithm, you have to set a parameter called damping factor [0.5,1.0). It represents the
extent to which the current value is maintained relative to incoming values.

With values of this parameters ≤0.7 we obtained no clusters, with 0.8 148 clusters and with 0.9 159
clusters. Thus, this algorithm is not useful for our work.

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

68

Also the Agglomerative Hierarchy clustering algorithm and the Gaussian Mixture Model algorithm
have been analysed but, they are not suitable for our case of study.

Results comparison

Considering polygons that identify some rivers firstly, and then some harbours and industries, a
mask is performed in order to find if a particular cluster centroid falls inside a polygon, in such a way
to link that cluster to a source of marine litter. This procedure is performed for the best three of the
algorithms presented before: K-Means, DBSCAN and Mean-Shift.
In the following tables, the results are shown: the centroid coordinates, the polygon name, the
cluster label, the amount of element inside that cluster, the ranking position based on the count of
elements considering the overall clusters.

Rivers
DBSCAN (11 clusters)

Centroid
longitude

Centroid
latitude

Polygon name Cluster label
Count of
elements

Ranking
position

12.41389 44.66663 Reno river 0 56 2

12.30901 45.21414
Brenta-Adige

rivers
1 7 9

12.69083 45.52348 Piave river 2 6 11

Mean-Shift (14 clusters)
Centroid
longitude

Centroid
latitude

Polygon name Cluster label
Count of
elements

Ranking
position

12.39117 44.78174 Po river 1 50 3
14.07829 42.67326 Vomano river 8 20 8
19.39282 40.90818 Semam river 11 3 12

K-Means (12 clusters)
No linking

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

69

Harbours and industries
DBSCAN (11 clusters)

Centroid
longitude

Centroid
latitude

Polygon name Cluster label
Count of
elements

Ranking
position

13.68303 45.09470
Rovigno
harbour

5 19 7

13.97743 42.78709
Giulianova

harbour
6 16 8

Mean-Shift (14 clusters)
Centroid
longitude

Centroid
latitude

Polygon name Cluster label
Count of
elements

Ranking
position

13.45814 43.60549
Ancona

harbour and
rafinery

4 31 5

18.08349 42.61729
Ragusa
harbour

12 2 13

K-Means (12 clusters)
No linking

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

70

Tests: 334 days of simulation from the Riccione beach in Emilia Romagna
The same test above is repeated for the Riccione beach.

Here below the possible sources found after 334 days of simulation are shown.

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

71

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

72

K-Means algorithm
Evaluating the silhouette score the best number of clusters found is k = 4.

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

73

Mean-Shift clustering algorithm
With the algorithm Mean-Shift 13 clusters are found.

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

74

DBSCAN (Density-based spatial clustering of applications with noise) algorithm
For the DBSCAN algorithm, with the silhouette method, we found 2 possible values for the
parameter eps: 10.5 km and 83 km. The second value has a higher silhouette score. Then the best
minPts value for both these 2 eps values is searched.

For eps = 10.5 km, we found two values for the minPts parameter: 4 and 26 (with the latter with a
higher value of silhouette score). As you can see from the plots below the best clusterization is

performed with the minPts equal to 4.

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

75

Eps 10.5 km; minPts 4; 8 clusters found

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

76

Eps 10.5 km; minPts 26; 5 clusters found

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

77

For the value eps = 83 km, we found the highest silhouette score at minPts equal to 8.
From the images below, it can be noticed that the algorithm find a unique cluster, so the best pair
of parameter to be chosen are eps = 10.5 km and minPts = 4.

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

78

Results comparison

Considering polygons that identify some rivers firstly, and then some harbours and industries, a
mask is performed in order to find if a particular cluster centroid falls inside a polygon, in such a way

to link that cluster to a source of marine litter. This procedure is performed for the three algorithms
presented before: K-Means, DBSCAN and Mean-Shift.
In the following tables, the results are shown: the centroid coordinates, the polygon name, the
cluster label, the amount of element inside that cluster, the ranking position based on the count of
elements considering the overall clusters.

Rivers
DBSCAN (8 clusters)

Centroid
longitude

Centroid
latitude

Polygon name Cluster label
Count of
elements

Ranking
position

12.41736 44.93931 Po river 1 127 2
12.88441 45.59113 Livenza river 2 23 3

Mean-Shift (13 clusters)
Centroid
longitude

Centroid
latitude

Polygon name Cluster label
Count of
elements

Ranking
position

12.45553 44.84761 Po river 1 94 2

12.31784 45.17529
Brenta-Adige

rivers
3 36 4

12.74859 45.54436 Piave river 4 15 5

K-Means (4 clusters)
Centroid
longitude

Centroid
latitude

Polygon name Cluster label
Count of
elements

Ranking
position

12.38222 44.83537 Po river 3 176 2

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

79

Harbours and industries
DBSCAN (8 clusters)

Centroid
longitude

Centroid
latitude

Polygon name Cluster label
Count of
elements

Ranking
position

13.58695 45.15219
Rovigno
harbour

5 5 6

Mean-Shift (13 clusters)
Centroid
longitude

Centroid
latitude

Polygon name Cluster label
Count of
elements

Ranking
position

12.31697 44.41464
Marina

Ravenna
harbour

2 79 3

15.06275 43.97263 Zara harbour 10 2 11

13.58695 45.15219
Rovigno
harbour

8 5 9

K-Means (4 clusters)
No linking

Conclusions

Considering the results obtained with all the considered clustering algorithms, Mean-Shift is the
most suitable for our study. Since we have to perform massive analyses on the C3HPC cluster, this
algorithm allows to have a non-subjective intervention of the users to choose the right value of
clusters. Moreover, considering the tables that compare the polygon masks between all the
algorithms, there is a good intersection of results between DBSCAN and Mean-Shift and with the
latter we have more matches between cluster centroids and possible sources.

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

80

Test considering all the sources used in the deliverable D3.3.2
Now, considering the Mean-Shift algorithm we have performed the polygon masks with all the
sources considered in the deliverable D3.3.2 for the results obtained for the beaches of Lesina and
Riccione.
The polygon masks analysis is performed for 5 period of time: one for each season (the autumn
season is shorter because of wind and current limitation of data) and one considering a full year (in
our case 334 days).
In the following sections this study is presented for each beach.

Lesina beach

WINTER

Polygons mask

Longitude Latitude Polygon name
Cluster

label
Counts

15.3785 41.9038 Lesina and Varano lakes 0 408

12.4477 44.8740 Po river 2 7

14.7974 42.0972 Trigno river 1 6

13.9451 42.8311 4 5

12.3176 44.4212 Marina Ravenna harbour 5 4

12.8291 43.9481 Foglia river 9 3

13.5161 43.6003 Ancona harbour and rafinery 6 3

13.2369 43.7173 Cesano-Misa rivers and Senigallia harbour 8 2

15.8848 43.6450 7 2

12.3494 44.6532 Reno river 3 1

16.2446 43.0251 Spalato harbour and Cettina-Jedro rivers 11 1

14.3660 42.3841 Ortona harbour 12 1

16.4956 42.7599 10 1

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

81

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

82

SPRING

Polygons mask

Longitude Latitude Polygon name
Cluster

label
Counts

15.3691 41.9058 Lesina and Varano lakes 0 365

12.4290 44.5789 Reno river 1 18

13.2378 43.7362 Cesano-Misa rivers and Senigallia harbour 2 14

12.6461 44.0830
Cesenatico-Rimini habrours and Rubicone-Uso-Marecchia

rivers
3 10

14.4320 42.3377 Ortona harbour 5 9

16.4160 43.0341 4 7

14.4091 44.6296 Fiume harbour 6 6

19.3699 40.7901 Semam river 8 2

13.5625 45.3142 Quieto river 9 2

19.4800 41.8302 Ishem-Mat-Drin rivers and San Giovanni Medua harbour 7 2

15.8130 43.6642 12 2

13.1375 45.6853 Marano-Grado lagoon 13 1

18.2119 42.5862 10 1

17.5599 40.7975 11 1

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

83

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

84

SUMMER

Polygons mask

Longitude Latitude Polygon name Cluster label Counts

15.3857 41.9078 Lesina and Varano lakes 0 338

14.5669 44.4053 1 32

15.2698 43.8501 Zara harbour and Zermagna river 2 23

12.3664 44.7985 Po river 3 13

13.7162 45.0384 Rovigno harbour 4 8

13.5843 43.5804 Ancona harbour and rafinery 5 2

16.7774 42.8933 Narenta river 6 1

13.8641 43.0266 7 1

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

85

AUTUMN

Polygons mask

Longitude Latitude Polygon name Cluster label Counts

15.3871 41.9028 Lesina and Varano lakes 0 94

14.6957 42.1737 Vasto harbour 1 5

12.7950 45.5618 2 2

12.5066 45.4597 Venice lagoon 4 1

13.8901 42.9425 San Benedetto del Tronto harbour 3 1

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

86

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

87

ALL SEASONS

Polygons mask

Longitude Latitude Polygon name
Cluster
label

Counts

15.3738 41.9063 Lesina and Varano lakes 0 1360

14.5586 44.4113 2 60

12.3912 44.7817 Po river 1 50

15.5692 43.6891 3 49

13.4581 43.6055 Ancona harbour and refinery 4 31

16.3927 42.9706 Narenta river 7 25

12.5242 44.2250
Cesenatico-Rimini habrours and Rubicone-Uso-Marecchia

rivers
5 23

14.0783 42.6733 Vomano river 8 20

13.4849 45.3998 6 19

12.9165 45.6047 Livenza river 9 12

19.2973 41.9177 Boiana river and Port Milena harbour 10 6

19.3928 40.9082 Semam river 11 3

18.0835 42.6173 Ragusa harbour 12 2

17.3485 40.9199 13 2

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

88

As you can notice there are some clusters that didn’t have an associated polygon. In this case the
matching is performed by hand looking where the centroid falls in the satellite maps.
On the following images the centroids with no matching are shown:

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

89

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

90

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

91

Riccione beach

WINTER

Polygons mask

Longitude Latitude Polygon name
Cluster
label

Counts

12.6364 44.0254 0 369

12.4631 44.8533 Po river 1 16

12.3014 44.4921 Marina Ravenna harbour 2 14

13.3182 45.6887 Marano-Grado lagoon 4 10

12.3784 44.2727
Cesenatico-Rimini habrours and Rubicone-Uso-Marecchia

rivers
3 8

12.3104 45.1811 Brenta Adige rivers 5 5

12.7603 45.5476 Piave river 7 5

13.5195 45.4222 Pirano-Isola-Koper harbours 6 4

13.7238 45.6140 Trieste harbour 8 3

14.2365 44.6447 Fiume harbour 9 1

13.5796 45.1751 Rovigno harbour 10 1

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

92

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

93

SPRING

Polygons mask

Longitude Latitude Polygon name
Cluster

label
Counts

12.6350 44.0258 0 353

12.4603 44.8595 Po river 1 35

12.3893 44.2495
Cesenatico-Rimini habrours and Rubicone-Uso-Marecchia

rivers
2 21

12.3298 45.1476 Brenta Adige rivers 3 16

12.2798 44.5780 Reno river 4 11

12.7752 45.5546 Piave river 5 5

12.9766 45.6249 6 3

14.2590 44.6162 Fiume harbour 7 1

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

94

SUMMER

Polygons mask

Longitude Latitude Polygon name
Cluster

label
Counts

12.6406 44.0222 0 384

12.4381 44.8210 Po river 1 20

12.4566 44.1616
Cesenatico-Rimini habrours and Rubicone-Uso-

Marecchia rivers
2 13

12.2862 44.5569 4 9

12.3619 44.2814
Cesenatico-Rimini habrours and Rubicone-Uso-

Marecchia rivers
3 8

12.3089 44.4239 Marina Ravenna harbour 5 5

13.0740 45.6418 Tagliamento river 7 2

13.5776 45.1642 Rovigno harbour 6 2

12.3044 45.1832 Brenta Adige rivers 11 1

13.6446 45.7542 Isonzo river - Monfalcone harbour 9 1

12.7106 45.5290 Piave river 10 1

14.2673 44.6139 Fiume harbour 8 1

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

95

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

96

AUTUMN

Polygons mask

Longitude Latitude Polygon name
Cluster

label
Counts

12.6334 44.0274 0 132

12.2889 44.5729 Reno river 2 6

12.4357 44.8207 Po river 1 5

12.5179 44.9181 Po river 3 3

12.3666 44.2521 Cesenatico-Rimini habrours and Rubicone-Uso-Marecchia rivers 6 2

12.6529 45.5086 Venice lagoon 5 1

12.2990 45.2193 Brenta Adige rivers 7 1

13.5402 45.7225 Isonzo river - Monfalcone harbour 4 1

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

97

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

98

ALL SEASONS

Polygons mask

Longitude Latitude Polygon name
Cluster

label
Counts

12.6369 44.0249 0 1402

12.4555 44.8476 Po river 1 94

12.3170 44.4146 Marina Ravenna harbour 2 79

12.3178 45.1753 Brenta Adige rivers 3 36

12.7486 45.5444 Piave river 4 15

13.4525 45.7033 Marano-Grado lagoon 5 14

13.0375 45.6458 Tagliamento river 6 8

14.2797 44.6791 Fiume harbour 7 6

13.5869 45.1522 Rovigno harbour 8 5

13.5195 45.4222 Pirano-Isola-Koper harbours 9 5

15.0628 43.9726 Zara harbour and Zermagna river 10 2

16.3650 43.1685 Spalato harbour and Cettina-Jedro rivers 11 1

14.6983 44.2834 Zara harbour and Zermagna river 12 1

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

99

The centroids with no matching for each period of time are shown in the following images, for all of
these unmatched centroids we are going to choose the best sources to associate to them:

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

100

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

101

Simulation results and summaries
After having defined the method, the backtrajectories simulations have been performed for 330
days with a continuous release of 3 particles per hour. The beaches chosen are: Grado Pineta, Punta

Sabbioni, Riccione, Bosco Isola Lesina, Fasano and Zambratija. For each of them the statistical
analysis and the clusterization is performed for different periods of time: annual (2017/12/22 -

2018/10/24), winter (2017/12/22 - 2018/03/20), spring (2018/03/21 - 2018/06/21), summer
(2018/96/22 - 2018/09/22) and autumn (2018/09/23 - 2018/10/24). For the autumn we have less

days of simulation since with the C3HPC limits of computational time we were able to perform only
330 days of simulation.

The polygons considered for matching the centroid clusters to the sources are shown below:

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

102

Here below an example of the analysis is shown, the results are of the Punta Sabbioni beach. The
tables for each period of time show: the counts of beached elements found in that time period, the

probability of the source to be the pollutant for that beach in study, and the partial % that indicates
the probability not considering the source with more counts elements. For each time period the

figures with the cluster and centroids are shown on the right. For example, considering the annual
time period, the Venice lagoon source has about the 70% of probability to pollute the Punta Sabbioni

beach.

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

103

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

104

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

105

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

106

Conclusions
In conclusion, the main results are organized in digital form. In the working progress they are

available in the following website: http://interreg.c3hpc.exact-lab.it/MARLESS/
The following image shows the homepage of the website; the part relative to this work is the ‘Study

of the backtrajectories of floating objects release into the sea ’ in the section relative to ‘Numerical
simulations’.

On the link ‘Backtrajectories’ you can find the maps with the polygons that represents the possible
sources of marine litter and the list of beach studied.

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

107

Then, if you click on a beach you will see the results obtained:

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

108

Clicking on the time period of interest you can see the respective result obtained:

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

109

These html pages are also available in the attached folder D3.3.4.tar.

Appendix
Jupyther code for diffusion test
%matplotlib inline
from parcels import FieldSet, ParticleSet, Variable, JITParticle, AdvectionRK4, plotTrajectoriesFile, D iffusionUniformKh
import numpy as np

import math
from datetime import timedelta
from operator import attrgetter

fieldset = FieldSet.from_parcels("MovingEddies_data/moving_eddies")
kh_zonal = 10 #in m^2/s
kh_meridional = 10 #in m^2/s both values are converted to degrees/s under the hood since the mesh is spherical and
not flat

http://www.italy-croatia.eu/

European Regional Development Fund www.italy-croatia.eu/acronym

110

fieldset.add_constant_field("Kh_zonal", kh_zonal)
fieldset.add_constant_field("Kh_meridional", kh_meridional)

pset = ParticleSet.from_list(fieldset=fieldset, # the fields on which the particles are advected

 pclass=JITParticle, # the type of particles (JITParticle or ScipyParticle)
 lon=[3.3e5, 3.3e5], # a vector of release longitudes
 lat=[1e5, 2.8e5]) # a vector of release latitudes

output_file = pset.ParticleFile(name="EddyParticles.nc", outputdt=timedelta(hours=1)) # the fi le name and the time
step of the outputs

pset.execute(pset.Kernel(AdvectionRK4) + pset.Kernel(DiffusionUniformKh), # the kernel (which defines how
particles move)
 runtime=timedelta(days=6), # the total length of the run

 dt=timedelta(minutes=5), # the timestep of the kernel
 output_file=output_file)

rsync -vlch -e "ssh -i C:\Users\705138\Documents\MobaXterm_Portable_v20.6\Chiavi/
Marless\id_rsa_C3HPC_farrisc" prova_prossimità_adriatico.nc farrisc@login.c3hpc.exact-

lab.it:/lustre/arpa/scratch/MARLESS/

http://www.italy-croatia.eu/
mailto:farrisc@login.c3hpc.exact-lab.it:/lustre/arpa/scratch/MARLESS/
mailto:farrisc@login.c3hpc.exact-lab.it:/lustre/arpa/scratch/MARLESS/

European Regional Development Fund www.italy-croatia.eu/acronym

111

References

1 [Online]. Available:
https://nbviewer.jupyter.org/github/OceanParcels/parcels/blob/master/parcels/examples/t

utorial_parcels_structure.ipynb.

2 [Online]. Available:
https://nbviewer.jupyter.org/github/OceanParcels/parcels/blob/master/parcels/examples/d
ocumentation_indexing.ipynb.

3 P. Delandmeter e E. van Sebille, The Parcels v2.0 Lagrangian framework: new field
interpolation schemes, Geoscientific Model Development, 2019.

4 K. Döös, B. Jönsson e J. Kjellss, Evaluation of oceanic and atmospheric trajectory schemes in

the TRACMASS trajectory model v6.0, Geoscientific Model Development, 2016.

5 [Online]. Available:
https://nbviewer.jupyter.org/github/OceanParcels/parcels/blob/master/parcels/examples/t
utorial_analyticaladvection.ipynb.

6 E. van Sebille e et al., Lagrangian ocean analysis: Fundamentals and practices, vol. 121,
Elsevier, A cura di, Ocean Modelling, 2018, pp. 49-75.

7 [Online]. Available:
https://nbviewer.jupyter.org/github/OceanParcels/parcels/blob/master/parcels/examples/t
utorial_diffusion.ipynb.

8 N. Scheijen, Plastic litter in the ocean. Modeling of the vertical transport of micro plastics in

the ocean.

9 V. Onink e et al., Global simulations of marine plastic transport show plastic, vol. 16,

Environmental Research Letter, 2021.

http://www.italy-croatia.eu/

