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INTRODUCTION 
 
 
 
 

Deliverable 3.3.3 (D3.3.3) “Maps of probability of accumulation or removal of waste” 

concerns the realization of tools to identify areas of highest accumulation and removal with high 

probability to be a hotspot of marine litter. These maps should provide predictions about the presence 

of marine litter in a coastal environment of the Adriatic Sea, potentially being a support tool to guide 

future on field monitoring campaigns. 

The MARLESS project schedule the realization of these maps for the Work-Package 3 (WP3): 

“Monitoring optimization” inside the Act 3.3: Marine litter hotspots identification. Project partner 

Friuli Venezia Giulia Autonomous Region is the main responsible for the realization of this directive. 

The production of these maps is based on an innovative approach which aim to combine together the 

outputs of the dispersion model developed in the directive D3.3.2: “Model of dispersion of floating 

waste” with the results of satellite images analysis of the ESA satellite mission Sentinel-2 which is 

developed as a preliminary step in D3.3.3. 
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PART 1 

SATELLITE IMAGES ANALYSIS 
 
 
 
 
 
 In this section we provide a general overview of properties and key points about the 

monitoring of Earth’s surface with remote sensing instruments, in particular describing the technical 

properties of the ESA Copernicus space mission Sentinel-2. 

 
 

1.   Marine litter detection with space-borne instruments 
 

 
Marine litter detection has become a topic theme nowadays in the agenda of several Nations 

and Institutions worldwide due to a widely awareness about the consequences of human activities on 

the maritime environment. A wide range of sources produces the waste that pollute our seas, varying 

from urban/industrial to maritime activities. The debrides they produces are transported by riverine 

currents into seawaters and then dispersed by sea currents and wind streams, letting the garbage to 

pollute environments at large distances. Marine litter is not simply scattered over the sea or along 

coastlines, it can form filaments or patches in seawaters or it could be aggregated when deposited on 

beaches, in both cases it is usually found mixed with organic materials (seaweeds, algae, woods etc.). 

The composition and the spatial distribution of the marine litter changes over time: marine litter is a 

dynamical problem. Visual ship surveys or land-based monitoring campaigns are useful to record in 

detail the presence of marine litter and the kind of the debris it is composed by, but these activities 

take a static picture of the reality only once a time and are too expensive to be conducted on a large 

scale with higher frequency. As appointed by several studies in the recent years, space-born sensing 
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instruments can carry relevant improvements to improve marine litter monitoring, thanks to a 

coverage of Earth’s surface on large spatial areas and a more frequency passage of the instruments 

over time [1][2][3].  

 

1.1 Properties of remote sensing instruments 
 

Satellites dedicated to monitor Earth’s environment move in polar orbits that let them to 

achieve a revisit time, i.e., the time interval from two sequential passages over the same point above 

a location on Earth, of about a week. This property is usually referred as the temporal resolution of a 

satellite. For example, the Sentinel-2 mission achieve of about 3-5 days (see Fig. 1.1). Moreover, the 

orbit altitudes, about 700 km, allows the instruments equipped on a spacecraft to achieve a swath 

width, i.e., the wide of the imaged area on the ground, of hundreds kilometres.  

 

  

Figure 1.1. Left: revisit frequency achieved by the twin satellite Sentinel-2A and Sentinel-2B.  

Right: due to the large swath width, several orbits areas overlap, increasing the coverage frequency 

of the satellite especially at higher latitudes [4]. 

 

 

We can divide remote sensing instruments into two classes: active and passive instruments. 

The first send to Earth’s surface a signal (typically radio) and measure the echo, the latter simply 

collect reflected sunlight over objects on the ground. Active sensors pose more difficult challenges 

to reconstruct the signal ground-truth, thus in this work we adopt and describe only passive 

instruments properties and imagine analysis techniques (see Figure 1.2). 
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Figure 1.2. Schematic view of the working principle of passive remote sensing 

instruments. The data collected by the instruments aboard the satellite are 

periodically downloaded to the ground stations, i.e., a series of surface-based 

facilities that communicate with all the satellite of a constellation and can 

perform the first processing steps on the raw data. Image credits: 

DOI:10.13140/RG.2.2.22741.12007   

 

Remote sensing instruments cannot detect objects on the ground with high detail. Optical 

properties of satellite camera typically let to achieve a spatial resolution that vary from about 100 m 

down to 10 m. Spatial resolution specifies how much ground corresponds to the side of a pixel, as the 

next image shows (figure 1.3). Satellite detectors supply the spatial resolution limits by having the 

ability to see in a wide spectral range that typically goes from the visible to the infrared part of the 

electromagnetic spectrum. The collected light is not recorded as a continuous signal but is spitted into 

a discrete set of channels that could range from a few dozen to a hundred, defining the spectral 

resolution of the satellite. There are two classes of instruments: if the bands are about a decade, we 

have a multispectral instrument, if the bands are about hundreds we have a hyperspectral instrument.  

The last parameter that characterizes a remote sensing instrument is its radiometric resolution that 

indicates the ability of the sensors to distinguish two different intensity of the measured light. Usually 

expressed as a bit number, radiometric resolution can range from 8 to 16 bits. Figure 1.4 resumes the 

main properties of a remote sensing mission. 

 

http://dx.doi.org/10.13140/RG.2.2.22741.12007
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Figure 1.3. The leftmost picture shows a part of the Island of Bagni in Monfalcone (Italy) as seen 

with Google Maps. The next three pictures display the same area as seen by three different 

monochromatic bands of Sentinel-2, having pixels with an increasing spatial resolution of 10, 20 

and 60 m. The increasing of the pixel dimensions implies a loss of the details of the object on the 

ground smaller than the spatial resolution. 

 

 

 
 

 
TEMPORAL RESOLUTION 

SPATIAL RESOLUTION 

SPECTRAL RESOLUTION 

RADIOMETRIC RESOLUTION 

 

Figure 1.4. The main four properties of a remote sensing mission. The picture above is the rendering 

view of the NASA Landsat-8 mission (credits: https://landsat.gsfc.nasa.gov/article/landsat-data-

continuity-mission/). 

 

 

 

 

https://landsat.gsfc.nasa.gov/article/landsat-data-continuity-mission/
https://landsat.gsfc.nasa.gov/article/landsat-data-continuity-mission/
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1.2 How the data from satellite cameras are stored 
  

 Remote sensing missions store data they collect into one or more raster images with associated 

auxiliary data and metadata. A raster is a matrix of pixels which contains the values of the measured 

signals in a suitable format to save memory and preserve the loss of information, i.e., the values are 

stored as Digital Numbers (DN). Space missions don’t provide the User the raw data collected by 

spacecraft’s instruments, but several post-processing elaborations are performed over them before 

they are ready for Users analysis. Metadata and auxiliary data are associated to rasters to provide 

information about how values have been calculated. Geo-referencing, i.e., associating a Geo 

Information System (GIS), and orthorectification, i.e., parsing data with a Digital Elevation Model 

(DEM), are two fundamental steps to elaborate raw data. The metadata attached to a raster provides 

information about these processes, along other properties such as the date-time of the acquisition of 

the image, the spacecraft orbit status, recording instrument and electronics technical properties, data 

calibrations, etc. Thus, when we open a raster image, the raw pixel values have been already (slightly) 

altered by aforementioned operations and dedicated software are needed to handle properly the 

metadata. In our work we use mainly QGIS (https://www.qgis.org/en/site/) and specific Python 

libraries to read such geospatial data. The collection of raster, metadata and other auxiliary data are 

usually referred as the products. Each raster contains data from a single instrument band. 

 

1.3 How to process raster images  
 
When we open a raster, we can visualize and manipulate data in several ways, according to our 

purposes. Similar to the most common steps for the manipulation of images, we can define a pre-

processing phase and a post-processing phase. We provide now a brief survey of the main actions to 

take in the two phases. 

 

- Pre-processing phase 

 This phase includes steps that wary depending on the level of processing of the products. 

Missions tend to provide to Users products already georeferenced and ortho-rectified, but they 

https://www.qgis.org/en/site/
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make available also lower level products. The orthorectification step is quite complicated, thus 

typically the User don’t perform it. The main pre-processing steps are (listed not in order): 

 

i) Land/terrain/cloud Masking 

ii) Atmospheric correction 

iii) Clipping  

iv) Resampling 

 

- Post-processing phase 

 Once the pre-processing phase is complete, the User has setup the data to analyse them. The 

reflectance value of each pixel of every band can be read and put into a reflectance Vs wavelength 

plot to make spectral plots, or two or more (clipped and masked) raster can be algebraically combined 

making environmental indexes, which are displayed as heatmaps. Classification technique and other 

filters can also be applied to interpret data to recover their ground-truth. The User can use all these 

techniques together or independently. Here is the resume of such techniques: 

 

i) Making of spectral plots 

ii) Making of heatmaps from environmental indexes 

iii) Classification of pixels via machine learning techniques 

iv) Applying filters or masks 

 

We will go back to details of how we have processed Sentinel-2 rasters, but first we have to describe 

the Sentinel-2 mission itself. 

 

 

2. The ESA Copernicus Sentinel-2 Mission 
 

Table 2.1 reports a list of the main spatial missions with their properties. The most suitable 

space mission providing open data access to fulfil our objectives is the ESA Copernicus Sentinel-2 
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mission. Spectral data are freely downloadable from the mission website, with each new image ready 

to be downloaded in less than 24 hours after its acquisition. Revisit time and spatial resolution are a 

valid compromise between other open data missions and the number of bands are enough to have a 

good set of spectral data points to distinguish some prominent signatures in the spectral plots. 

Sentinel-2 has been already tested with some success for it detection capability of marine litter, as 

reported in literature by several studies (see the section “Searching marine litter with Sentinel-2: 

literature review”). Before discussing forward about marine litter investigation, we are going now to 

briefly summarize the technical details of the Sentinel-2 spacecraft and its products. 

 

Mission Name Spacecraft 
Best Spatial 

Resolution 

Spectral 

Class 

Number 

of Bands 
Revisit time 

Landsat [29] Landsat 8 30 m Multispectral 8 16 days 

PlanetScope [30] 130+ Cubesat 5 m Multispectral 8 Daily 

Sentinel [31] 
Sentinel  

2A-2B 
10 m Multispectral 13 3 – 5 days 

WorldView3 [32] (*) / < 10 m Multispectral 17 1 – 4.5 days 

PRISMA [33] (*) / 
30 m + 5 m 

pan camera 
Hyperspectral ~ 250 7 – 14 days 

Table 2.1 List of main remote sensing missions dedicated to monitor Earth environment to give the 

reader a quick comparison to spacecraft and cameras properties discussed in the text. For each 

mission, the best spatial resolution available is reported, therefore the number of bands column 

indicate how many bands there are with that spatial resolution. Symbol (*) indicates mission with no 

open data access policy. 

 

 

2.1 Sentinel-2 spacecraft technical details 
 

ESA Sentinel missions are a family of satellite that are part of the Copernicus programme, the 

European Union project of monitoring Earth‘s environments trough satellite and in-situ data [5][6]. 

Sentinel-2 is a mission dedicated to land, marine and atmospheric monitoring and consists of a 

planned constellation of four identical satellites. Up to now, only half of the Sentinel-2 constellation 

is operative, with the other members scheduled to launch in the further years.  
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The two satellites working nowadays are Sentinel-2A and Sentinel-2B. They orbits Earth at 

700 km of altitude in the same polar orbit shifted by 180°. They are passive instruments that collects 

reflected sunlight via their optical camera named MultiSpectral Instrument (MSI) [7]. Figure 2.1 

shows the external appearance of a Sentinel-2 spacecraft and the layout of the MSI. 

 

  

Figure 2.1. Left panel: schematic view of a Sentinel 2 satellite. The MSI payload is attached on the 

left of the spacecraft body. Right panel: inside view of the MSI instrument. Further details are 

available through the mission website. 
 

 

MSI is a multispectral camera with wide swath covering wavelengths from infrared to visible 

and is designed specifically to satisfy the land-monitoring applications established for the Sentinel-2 

mission. The MSI camera sensors collect sun radiation reflected by Earth atmosphere or land/sea 

surfaces in 13 channels with different resolutions: 

 

 Three channels centred at wavelengths in the visible (Red. Green, Blue) and one in the 

near-infrared collect light at 10 meter resolution. 

 

 Six channels operate at 20-meter resolution, of which one works in the Red-Edge band, 

three in the NIR band and two in the SWIR band. 

 

 The last three channels have a 60-meter resolution where the channel at a shorter 

wavelength operates in the Ultra Blue band, the other two in the SWIR bands. 
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Table 2.2 and figure 2.2 reports full specifications of the wavelength of the bands and their main 

usage for the Sentinel-2 mission. 

The pair of Sentinel-2 satellites operate continuously, taking images in a push-broom scanning 

mode and observing Earth surface with a 290 km swath width and achieving a revisit time that is 

about 5 days and can be decreased thanks swath overlapping at middle latitudes. The revisit time over 

Italy has been tested by counting all the tiles available in the two years 2020-2021 depicting the 

coastal area of the Friuli Venezia Giulia Autonomous Region. Averaging over all the images taken 

monthly for the two years, the calculated revisit time is about 2.5 days. Table 2.3 shows the frequency 

of the images taken by Sentinel-2A/B for each month. 

 

 

 

   Table 2.2. MSI list of spectral bands grouped for their spatial resolution for each of the 

satellite of the Sentinel-2 mission. There are 13 bands numbered 1 to 12 due to the special 

name assigned to “Band 8a”, which cover with lower spatial resolution part of the same 

spectra seen by Band 8 [7]. 
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Figure 2.2. The chart shows the position and the amplitude at FWHM of all Sentinel 2 spectral 

bands over the electromagnetic spectrum, grouped for their spatial resolutions. The picture show 

information of the bands main monitoring land purposes. Bands B1, B9, B10, regarding 

atmospheric analysis, are not used in the proceeding of our study [8].  

 
 

 

Table 2.3. Monthly images available for each spacecraft. The column “Av. Img.” reports the average 

number of images available each month. The calculation is done by counting how many images depict 

the city of Monfalcone (Italy) during a month and dividing the result by the total amount of images 

showing the same area in a year. It can be notice that the number of passages of a spacecraft is not 

constant over the time and also changes between the two spacecraft, but the total number of passages 

is constant (Npass = 144). 

 

Month S2A Images S2B Images Total Montlhy Images Av. Img. Month S2A ImagesS2B ImagesTotal Montlhy Images Av. Img.

JAN 6 7 13 2,4 JAN 6 6 12 2,6

FEB 6 5 11 2,5 FEB 5 6 11 2,5

MAR 6 7 13 2,4 MAR 7 6 13 2,4

APR 6 6 12 2,5 APR 6 6 12 2,5

MAY 6 6 12 2,6 MAY 5 6 11 2,8

JUN 6 6 12 2,5 JUN 6 6 12 2,5

JUL 6 6 12 2,6 JUL 6 6 12 2,6

AUG 7 6 13 2,4 AUG 7 6 13 2,4

SEP 6 6 12 2,5 SEP 6 6 12 2,5

OCT 5 6 11 2,8 OCT 6 6 12 2,6

NOV 6 5 11 2,7 NOV 5 6 11 2,7

DEC 6 6 12 2,6 DEC 6 7 13 2,4

2020 2021
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2.2 Contents of Sentinel-2 products 
 

 
 Where to find and how to download Sentinel-2 products 

 
 MSI images are transmitted to the Ground Segment of the Sentinel-2 mission, which assigns 

a geometric model and radiometric corrects the raw data. The outputs of this process are then 

compressed, radiometric corrected, orthorectified and made disposal as Level 1C products, which are 

downloadable at the mission webpage: https://scihub.copernicus.eu/dhus/ (hereafter referred as 

SciHub portal) as zipped files (figure 2.3 shows the main page of the website). 

 

 

Figure 2.3. The SciHub portal main page shows and interactive map of the whole Earth surface. 

On the top left there is the search bar with a dropdown menu. The access to the products is subject 

to a free sign up to the website. 

 

Searching and downloading a Sentinel-2 product is quite straightforward: first, we have to draw on 

the map displayed in figure 2.4 a polygon containing the area we want to study. Then we have to 

select form a cascade menu the sensing period, i.e., a time interval that have to comprise at last one 

https://scihub.copernicus.eu/dhus/
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orbital passage of a Sentinel-2 spacecraft. In the end we have to select from the same menu the product 

type and the cloud filter intensity and start the search. These two steps are shown in figure 2.5. 

If there are one or more products available, they will be displayed in a list where we can choose to 

immediate download them, look a quick RGB preview of the whole area imaged in the product or 

save in a virtual cart for late downloading (see figure 2.5 for the query results).   

 

 

                         Figure 2.4 

 

                          Figure 2.5 
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 Sentinel-2 products content 

 

 Level 1C products most important content is the set of 13 raster images, one for each Sentinel-

2 band, and the true color image (TCI), that is a RGB preview of the product imaged area. The 

extension of such area depends on how Earth’s surface was imaged during the spacecraft orbital 

passage and how it fits into the tiling grid of the Sentinel-2 mission (figure 2.6). Each tile is a squared 

area of about 110 km2 (figure 2.7). Other Level 1C product contents are metadata and vector data. 

The former contains important information that helps to contextualize raster data (figure 2.8). 

 

  

  

Figure 2.6. Left picture: jpeg preview obtained by conversion of a TCI raster of a Sentinel-2C tile 

over the Gulf of Trieste. In the picture is visible the entire coastline of Friuli Venezia Giulia Region 

up to the eastern part of the Venice Lagoon (left) and of the Istrian Peninsula (right). The black 

slice on the left top corner contains no data. Right picture: Sentinel-2B TCI of the same area, the 

image cuts are sligtly different due to not extacly overimposed trajectories of the orbits of the two 

spacecraft. 

 

 

Figure 2. How the Earth’s surface is sampled 

by the tiling grid. Due to the overlapping of 

adjacent orbits, there could be two consecutive 

tiles depicting the same area. 
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Figure 2.8 Tree structure of a generic Level 1C Sentinel-2 product when opened with the ESA SNAP 

software. More information about each files is avaiable on the online mission documentation [9]. 

 

 Rasters 

 A raster is simply a collection of values on a two-dimensional grid. The physical meaning of 

raster data depends on the context. In remote sensing field, the values we found in a raster are the 

radiance measured by the MSI pixel camera and distributed over a pixelated grid. These values are 

stored as DN converted as integers to memory save reasons. The radiance values are converted to the 

reflectance ones thanks to the formula: 

 

radiance =  reflectance ∗  cos(𝑟𝑎𝑑𝑖𝑎𝑛𝑠(𝑆𝑢𝑛𝑍𝐴𝑛𝑔)) ∗ 𝑠𝑜𝑙𝑎𝑟𝐼𝑟 ∗ 𝑈
𝜋⁄  

 
Where the value of SunZAng (the angle of the Sun at the zenith), the values of U and solarIr (the 

solar irradiance) for the considered band can be found in the metadata. Moreover, the metadata 

contains the value of the scaling factor to restore reflectance values as floating point numbers.  

While the latitude and longitude edges of a raster are fixed by the tile extension, the total number of 

pixels in a raster changes according to the spatial resolution of the given band. For example, a single 
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20 m pixel band B6 can contain four 10 m pixels of band B2. In table 2.4 we report the size of a raster 

in function of it spatial resolution. 

 

Bands Spatial resolution Tile size (km) Tile size (pixels) 

B1, B9, B10 60 m 110 km x 110 km 1830 x 1830 

B5, B6, B7, B8, B8A, B11, B12 20 m 110 km x 110 km 5490 x 5490 

B2, B3, B4, B8 10 m 110 km x 110 km 10980 x 10980 

Table 2.4 

 

 To fully understand satellite raster contents we need to know if the data are correctly 

georeferenced and what is the world geodetic system (WGS) associated to the pixel grid (for more 

information about WGS, see https://en.wikipedia.org/wiki/World_Geodetic_System). Metadata 

contains such information and every time we act on a raster we have to care about if the WGS is 

correct. 

 

 Sentinel 1C vs Sentinel 2A 

 

 A final word Level-1C: these products are also labelled Top of Atmosphere (TOA) files, 

meaning that the reflectance values have not been corrected due to the atmospheric disturbance. In 

our work, we use Level 1C products and evaluate by ourselves the best way to apply an atmospheric 

correction to our data. Level-2A are not used because the automatic atmospheric correction provided 

by the Sen2Cor ESA software is known to not work well with coastal environments. 

Figure 2.9 shows the chain of data processing involved to make a Level-1C product (more details 

are provided on Sentinel-2 mission website).  
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Figure 2.9. Level-0, Level-1A and Level-1B products are internal products not available to Users. 

 

 

3. Investigating marine litter with Sentinel-2: literature review 
 
 

Marine litter investigation using aerial or space-born instruments is a new field of research, 

hence the literature is still debating the most reliable and replicable process to analyse Sentinel-2 

images finding pixels containing marine litter.  

Difficulties arises not only by the technical limits of the instrumentation, but also by the lack 

of validated a-priori knowledge about the nature of the objects that produce the measured signals. We 

already know that the “marine litter” word indicates object of different nature. Only looking at their 

main component, i.e., plastics, we have to distinguish between a plethora of types, colours and 

dimension of plastics. Moreover, marine litter components form heterogeneous patches within them 

or mixed with other biological material. These patches could be distributed randomly in the 

environment and have various extension. Therefore, there are no prefixed spectral signatures or well-

defined bounding areas to search. The identification of marine litter hotspots in coastal or marine 

environments is nevertheless made possible by adopting some strategy and approximations.  
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Due to the remarkable problem of plastic pollution of marine environments, the search of 

marine litter with remote sensing instruments is mostly dedicated to find plastic spectral signatures. 

This field of research is new and still open to debate. The studies focus on testing limits in the 

detectability of plastic signals and in establish replicable methodologies. One important conclusion 

that shares such studies is that Sentinel-2 is a space mission that can help finding plastic debrides 

thanks its infrared spectra bands that matches the spectral range where plastic spectra measured in 

laboratory exhibits important absorption lines [10] (figure 3.1).  

 

 

Figure 3.1. The measured spectra of plastic harvested in USA 

beaches. Shaded areas indicate the absorption tips of the plastics. 

 

To solve the problem of the ground-truth of the pixels measured reflectance, some studies 

have focused their efforts in measuring signals emitted by handmade plastic rafts afloat near coastal 

areas (these studies have been conducted by the University of the Aegean in two campaigns named 

‘Plastic Litter Project’ for the years 2018-2019 [11][12] and by a team of researchers in Cyprus [13]) 

(figure 3.2). 
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Figure 3.2. Aerial view of the three plastic rafts 

deployed at Tsamakia beach. [11] 

 

Other studies has instead focused their efforts searching plastic debrids under different 

environmental conditions around the globe, and only a study try to extend the search of marine litter 

over the time [14][15][16][17].  

All the works listed before show that plastic marine litter is detectable using Sentinel-2, but 

the environmental conditions and the in-situ data of the pixels are always well known or there is some 

knowledge on the ground-truth. No open scenario are studied, and are preferred the cases of marine 

litter floating over seawater. These researches have nevertheless appointed some important facts that 

we have to take into account into the proceedings of our work:  

 

i) The importance of the NIR band in highlighting plastic is proved, but the signal in this 

band is often difficult to distinguish from the spectral response from other objects and 

in particular from seawater when dealing with transparent or blue plastics. 

 

ii) Atmospheric correction is needed to compare images at different date times, but due 

to the action of the correction algorithms in the blue band, it may happen that the signal 

of plastic can be significantly altered.  

 

iii) Patches that occupy less than 50% of a raster pixel may not be detectable. [18]. 
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iv) Machine learning algorithms are useful to catalogue automatically large area, but the 

results of unsupervised or supervised method need to be fine-tuned by more in-situ or 

synthetic data spectra. 

 

 

4. Analysis of Sentinel-2 products 
 

As appointed before, up to nowadays there is no validate and trustable procedure already 

developed in literature to find marine litter. Several efforts focuses on floating marine litter with little 

attention to search beached marine litter of any kind or hotspots. We are not capable to study of the 

composition of such debris, but we are concerned in establishing a procedure to distinguish between 

pixels ‘clean’ of marine litter form pixels ‘contaminated’. This requires the identification two main 

class of pixels: those containing only the spectral signatures of natural features of the ground (water, 

sand, woods. scrublands …) or artificial ones (backwaters, wharves …) and those covered by natural 

or artificial elements that are beached there. The latter objects could occupy a surface 

heterogeneously, thus a pixel could exhibit a spectra that is not comparable with the spectra of a 

natural/artificial feature, making this a potential marine litter pixels. Moreover, even if a pixels is 

fully occupy by marine litter, the exact shape of its spectral signature is unknown The analysis we 

propose in this work is therefore driven by the following methodology: first, we focus on the creation 

of a database of spectral signatures of features of the ground, then we will start the classification of 

the pixels excluding those with known spectral signatures, distinguishing between two main 

categories, ‘reference pixels spectra (RPS)’ and ‘potential litter pixels spectra (PLPS)’. To build 

these classes, we have to pass through several step, letting us to properly process Sentinel-2 Level-

1C and get pixels spectra plots. This methodology will require the application some pre-processing 

techniques and in the post-processing phase the application of machine learning algorithms. 
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4.1 Pre-processing steps for Level-1C products.  
 
 
 The pre-processing phase of a satellite image usually includes the assignation of a 

georeferenced coordinate system. As appointed before, Level-1C are already provided in the 

EPSG4326 projection system, thus we do not need to assign an own.  The other steps we have perform 

to setup a Sentinel-2 product to further analysis are: 

 

1) cloud filtering; 

2) product resampling; 

3) bands atmospheric correction; 

4) clipping. 

 

1) Cloud filtering: 

Cloud filtering consists in discarding products with a cloud coverage occluding the area interested 

for our analysis. We perform cloud filtering both automatically and manually.  

When done automatically, the filtering is done simply by defining the cloudiness threshold in the 

product searching menu in the SciHub portal. Since a large extension of clouds over a tile very likely 

implies a coverage of our area, we have established that a value of cloud coverage equal or above the 

threshold of 60% indicates the partial or total darkness of our area of study. The discussion of how 

we have selected this value is reported in the next page. This parameter is passed to the SciHub portal 

every time we search a new product.  

 Nevertheless, clouds could occlude an area of study also if they occupy a small fraction of the 

whole tile. To check if our area of study is covered by such clouds, we hate to visual look at the TCI 

image, that is a RGB preview of the product tile. Completing this second “cloudiness” control ends 

this pre-processing step. 
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Hereafter in figure 4.1 we report a summary of the visual analysis of all the products available during 

the year 2021 that allow us to identify the 60% automatic threshold parameter. 

 

Figure 4.1: Sample of TCI images of products affected by different cloudiness listed in increasing 

order. The images are referred to all the tiles containing the city of Monfalcone. We lists two images 

around the 60% value to show that also those that visually seems to be cloud-free can have a high 

cloud coverage. This is surely due to the fact that the bands B1, B9, B10, used to evaluate cloudiness, 

are not all in the visible light range. 

  

DATA IMAGE PREVIEW CLOUD COV. % 

12 - 09 - 2021 

 

0 % 

2021-08-26 

 

12 % 

2021-11-20 

 

20 % 
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29 - 11 - 2021 

 

31 % 

31 - 12 - 2021 

 

46 % 

2021-09-07 

 

59 % 

2021-12-14 

 

60 % 
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2021-12-19 

 

73 % 

2021-12-04 

 

87 % 

2021-10-25 

 

99 % 
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2) Product resampling: 

  

 We have already discussed about the different spatial resolutions of the Sentinel-2 bands 

(Figure PS1), in this section we explain how we manipulate this parameter to obtain a common spatial 

resolution. We do not use the 60 m bands since they are dedicated to atmospheric measurements. 

Hence, we decide to downscale all the 20 m bands to 10 m. To avoid altering significantly the original 

signal content of each 20 m pixel, we use the simples nearest neighbourhood resampling algorithm 

to perform this task. This procedure operate as follow: the coordinate of each pixel in the output map 

is determined. Then, for each output pixel, the pixel value of input pixel closest to this coordinate is 

used as output value. The resampling process produces as output a raster having all the 9 band at 10 

m per pixel spatial resolution. 

 

 

Figure 4.2. 

Aerial views of a portion of the 

Panzano Bagni beach in city of 

Monfalcone (IT). 

From top left clockwise: 

Google Maps screenshot, band 

4 at 10 m spatial resolution, 

band 6 at 120 m spatial 

resolution, band 1 at 10 m 

spatial resolution. 
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3) Atmospheric correction: 

 

 The atmospheric correction of a product is needed to have comparable results between 

different days, since this operation corrects disturbances affecting light collected by the MSI camera 

sensors. Typical disturbance of reflected light moving from the ground back to the spacecraft are 

scattering or the absorption of light rays by atmospheric particles, whose intensity vary day by day 

due to the normal change environmental conditions of the atmosphere. Another important effect that 

such algorithms can correct is the sun glint, i.e., the phenomenon for which under certain angle of 

view the camera lens sees the sun mirrored into water bodies, measuring a reflectance value higher 

than the real one (figure 4.3). 

 

  

Figure 4.3. Comparison between two Sentinel-2 Level 1C tiles displaying the same maritime area 

with and without sun glint effect disturbance. 

 

Several software are available to perform atmospheric correction and each one has its own 

characteristics and field of application, moreover literature doesn’t point toward a unique algorithm 

capable to handle marine litter detection in the proper way. From all the software we have at disposal, 

we have selected the software ACOLITE developed at the Royal Belgian Institute of Natural Sciences 

(https://odnature.naturalsciences.be/remsem/software-and-data/acolite) because this software has 

https://odnature.naturalsciences.be/remsem/software-and-data/acolite
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been developed specifically to correct Sentinel-2 products when the studying coastal environments, 

that is indeed the environment of our work.  

Moreover, ACOLITE manual and technical details are open access and an online forum webpage 

helps the User with responsive and clear answer to any problems encountered during the installation, 

configuration or application steps [19][20][21]. 

ACOLITE takes as input any Sentinel-2 product and then processes producing as outputs resampled 

rasters for each band plus a RGB preview of the corrected area. There are several input parameters to 

handle, but a few set of them is sufficient to make a good correction of Sentinel-2 products, an 

example of a basic setup is provided by ACOLITE authors in the documentation. As general warning, 

the intensity of the rescaling of the reflectance values applied to the raster bands depends on the size 

of the area we select for the correction. It’s better to choice a large squared area, i.e., with an extension 

of at least 10 km side and comprising both inland than water surface, and check if the output spectral 

band pixels exhibits negative reflectance values. If this happens to a large set of points then the 

software is not working well and we have to change the input parameters or consult the user’s forum. 

 

 

4) Clipping 

 

Clipping an image means the operation of sub setting the raster using as input a text that 

describes a polygon on Earth surface trough the geographical coordinates of its vertices. Well Known 

Text (WKT) and GeoJson are the common file standards we have used in our work. Such files can 

contain the description of a single or multiple polygons. Typically, the area to cut is drawn manually 

by the User using a suitable coordinate reference system. We used the ESA SNAP Toolbox and QGIS 

to open Sentinel-2 products or satellite maps and draw with the desired accuracy the polygons 

containing the area of study. In the following images (figure 4.4 and 4.5), we shows an example 

extraction of a WKT string. The first picture shows a portion of a SNAP RGB preview of a Sentinel-

2 products over the low part of the Friuli Venezia Giulia autonomous region. The polygonal line 

follow the borders of the Trieste Airport perimeter. SNAP allow us to extract the polygon vertices 
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coordinates simply by right-clicking over the violet area and that selecting “WKT from Geometry”. 

At this point appear a window showing the text defining the polygon geometry. It’s very important 

to check the reference coordinate system (in this example, the WGS84) to check if the 

latitude/longitude pairs are compatible with the reference coordinate system of the raster bands. If the 

two system are different, we have to convert one of them done using online tools or the QGIS utilities. 

 

 

 

                          Figure 4.4 
 

 

                         Figure 4.5 
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The final output of all these processes is then a new raster having a size smaller than the original 

tile and with 10 bands at a spatial resolution of 10 m. Here below we show an example of a clipped 

area resulting from the clipping of a Sentinel-2 Level-1C tile on the 12th of September, 2021. The 

clipped area contours Punta Tagliamento beach in Veneto Region, near the mouth of the river 

Tagliamento. A Google Maps image is provided to better understand the features on the ground. 

 

  

     Sentinel-2 Level 1C tile  Clipped view of the tile showing the Punta 

Tagliamento beach. 

 
 

                                            Google Maps satellite image showing  

                                            with a red contour the clipped area 
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4.2 Post-processing  
 

In our work we pre-process each Sentinel-2 product applying a cloud filter, the atmospheric 

correction (which also included the resampling) and the clipping of the tile. Post-processing analysis 

steps of satellite image includes all the analysis techniques adopted to elaborate raster data and the 

choice of a particular one depends on the outputs we want to produce. We report the principal methods 

adopted in our work to perform such analysis: 

 

0) plotting pixel spectra and spectral signatures; 

1) producing band indexes maps; 

2) the classification of pixels by means of machine learning algorithms. 

 

 Plotting pixel spectra and spectral signatures 

 

 Pixel spectra 
  
Pixel spectra are reflectance vs wavelengths charts where we display reflectance values for all 

the bands of a single pixel. Since reflectance is a non-negative physical quantity, we don’t expect any 

of the band values to be lower than zero. If this case happens, we have to discard the pixel, or check 

if the atmospheric correction has push down too much the reflectance values (for example, the figure 

below show a spectra with unrealistic negative values in band B4 and B7 as consequence of having 

activated the glint correction parameter over an area not affected by such problem).  
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Plot’s points can be join together with a broken line to better visualize a “trend”. It is important 

to remind that a multispectral instruments measure reflected light in few bands, thus peaks and valleys 

that appears in spectra plots have not necessarily the true shape of the real-world spectra due to the 

lack of several intermediate points. However, the set of ten spectral points allow us to see the general 

trend of the spectral data and then make some assumptions of what is the environmental features that 

is producing such spectra. 

For example, one of the most recognizable spectra is that of the seawater, which has higher 

reflectance values in the visible band (typically, it peaks in the blue band B2), and then decrease 

towards zero-values in the SWIR part of the electromagnetic spectrum. This is a behaviour expected 

from the nature of seawater, which is black in the IR band. We show in figure 4.6 an example of a 

water spectra. 

   

Figure 4.6. Example of a typical seawater spectra signature. Data plots are averaged 

band values over a seawater area in the Gulf of Trieste of size 100 x 100 meters, on 

September 12, 2020. Intensity of the measured signal can vary due to a number of 

conditions but the trend remains the same.    
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 Spectral signature 
 

If we identify the nature of the object producing a spectra, we can say we have found its spectral 

signature. A single pixel of seawater, as it shown above, exhibits the expected trend for a seawater 

body. However, a single pixel could exhibit some random fluctuations of band points due to the fact 

we are studying the natural environment. Thus if we want to obtain a more representative and 

statistically significant spectral signature we have to take into account several pixels containing the 

same object. We can achieve this goal by clipping a tile over single or multiple areas where we are 

very confident that only a kind of material lies on the ground and then collect look at some statistical 

indicators such as: the mean of all the reflectance values, the value of the first venitle (or the quantile 

at 5% of the distribution) and last ventile (or the quantile at the 95% of the distribution). Hereafter 

are some examples to clarify our statements. 

First, we go back to water and we clip the tile of the Level 1C product of the orbital passage 

of Sentinel-2B over the Gulf of Trieste on 12th September, 2021. The clipping polygon is a square of 

1 km2 size and a visual inspection of the area in the RGB bands seems to not show nothing else than 

seawater in that area. Having an area of 1 km2 size means that we have in total 10 000 pixels. 

Averaging over all these values gives a series of ten points that let us to draw the thick blue line in 

the middle of the blue shadowed area. The borders of lower and upper side of the shadowed area are 

instead build by the reflectance values at the quantile 5% and quantile 95%. Thus with this simple 

plot we can say that almost the majority of the pixels of the distribution are very similar to the 

seawater spectral signature. 
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We report another example of a spectral signature, this time from a typical coastal 

environment like a sandy beach. It’s a bit more difficult to know exactly if the surface of a beach is 

completely free of other objects like beached seaweed, woods or strand with sun umbrellas, but at 

least we can exclude the latter if we not study the area during the summer time and the other by 

averaging over a large number of pixels, eventually manually discarding some strange and 

unexpected pixel spectra signature. The following example is made by clipping the same Sentinel-2 

tile of the seawater example over the pebbles beach of Marina Julia in Monfalcone (Italy). This time 

we used QGIS to define the borders of the clipping polygons to be sure to avoid to select buildings 

or the seawater. The bottom image is a screenshot from OpenStreetMaps showing a satellite view of 

the area and the two polygons. 
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Band’s indexes 
 

Because pixel of different bands refers to the same surface area, raster bands can be combined 

to produce new images, therefore enhancing some ground features that could not be seen using 

information of one band alone. The simplest way to combine raster is to select a triplet of bands and 

make RGB images, i.e., assigning to each pixel the right amount of red, green and blue to produce 

coloured images, or False-Colour images, i.e., substituting the red band with an infrared one. Figure 

4.7 shows examples of these images over the island of Barbana, in the city of Grado lagoon.  

Raster bands values can also be algebraically matched producing band indexes. Several 

studies have developed a huge amount of indexes for Sentinel-2 mission [22].  Since marine litter 

research is a newly and unforeseen field of study for this mission, researches have investigated the 

effectiveness of adopting old and new indexes. No research has found yet a set of indexes to highlight 

with high confidentiality the presence of waste in seas or coasts; indeed most of the studies use those 

indexes to discard unwanted pixels and guide to selected areas neural network algorithms.  

In the following, we list the set of indexes we have used for our study and that has been 

selected from a comparison review of literature about marine litter detection. Terms of the indexes 

formula refer to Sentinel-2 bands as reported in Table 2.2.  Numbers right to indexes names refer to 

biography entries. 

 

• Normalized Difference  

Vegetation index [23] 
NDVI  =  

B08 − B04

B08 + B04
 

• 
Normalized Difference  

Water index [24] 
NDWI =  

B03 − B08

B03 + B08
 

• Plastic Index [13] PI =  
B08

B08 + B04
 

• Floating Debrids Index[2] FDI =  B08 − B06 − (B11 − B6) ∗ k   ,   k =  
λB08 − λB04

λB11 − λB04
∗ 10 

• Simple Ratio [25] SR84 =  
B08

B04
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 All the indexes listed below highlights different features of Earth surface providing both a 

qualitative and quantitative way to analyse ground features (see figures 4.8 and 4.9). The use and the 

meaning of first two indexes is well established in literature: these indexes are adopted to investigate, 

respectively, areas occupied by vegetation or water.  The Plastic Index was first developed to find 

signal of plastic in the experiment conducted at Limassol’s Old Port, Cyprus, by a group of 

researchers working at marine litter detection [13]. In their study, a raft made of blue empty plastic 

bottles was placed in the sea near the coast and measurements of reflected light were collected by 

Sentinel-2 and by an unmanned aerial vehicle. The plastic index uses Band 8 over contribute of Band 

4 plus Band 8 because the study founded that plastic bottles emitted well detectable signals in the 

NIR band.  The Floating Debrids Index (FDI) has been developed specifically to try to improve the 

set of indexes at disposal able to finds material objects floating on seawaters [2]. SR84 is a simple 

index to evaluate how much a pixel is brighter in NIR than Red. It has been used in our work to 

simply obtain a quick view of the most prominent infrared features of an area. 

 

   

Figure 4.7. Eastern part of the Grado Lagoon (Italy) from a Google Maps screenshot. Left Panel: 

RGB image. Each pixel is a combination of the blue band (B02), green band (B03) and red band 

(B04). Image resolution is 10 m per pixel. Right Panel: False colour image. Respect to the RGB 

image the red band has been replaced with the B08 NIR band. This representation enhance the 

pixels with high coverage of grass or other plants.      
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Figure 4.8. Indexes maps of Eastern part of the Grado Lagoon. Left: NDVI map. Darker areas 

identify urban or water areas, whiter areas identifies green lands. Right: NDWI map. The colour 

meaning is complementary to the NDVI map, i.e., water bodies are whiter than land.  

 

 
 

   
   

Figure 4.9. Indexes maps of Eastern part of the Grado Lagoon.  

From top left clockwise: i) PI map. ii) FDI map. iii) SR84 map. 
 

 
 

 Ineffectiveness of indexes analysis for ML search 

 

 As appointed before, literature largely discusses the use of indexes to help to search marine 

litter. Unfortunately, no clear and unique methodology is provided to solve this problem. We have 
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tested such indexes during the first part of our work but we ended up with the evidence that those 

indexes are ineffective to highlight marine litter features on the ground for our areas of investigation. 

The main problem is that indexes are thought to highlight ground features by comparing only a 

restricted set of reflectance values. But the problem is that we don’t know a priori what the relative 

distance between band points when we look at a marine litter pixel. Indexes are good to quickly 

highlight features on the ground but doesn’t exist a reference catalogue or database to assign particular 

values to a precise class of objects. For example, the NDVI index use the normalized distance between 

the bands B8 and B4. If we take a coastal area and we get a value of NDVI = 0.5 for a pixel, we don’t 

know if this indicates the presence of marine litter in that pixel. Maybe the object is reflecting more 

infrared light than red because is part of a scrubland, or maybe we are looking at beached seaweed 

(in this case, it could be the case that marine litter is hiding under the seaweed, but surely we don’t 

see it signal). Thus the use of indexes, from our point of view, implies the loss of fundamental 

information from other band values that let to classify more properly a pixel. For any pixel, we should 

use the combined information of the whole set of indexes, but this statement points towards the use 

of the spectral signatures. Finally we recall that marine litter is accumulated in shores in several ways 

and we cannot compare our literature results with our cases of study. 

 
 

Classification of pixels by means of machine learning algorithms 
 
 The study of coastal areas implies the analysis of hundreds of pixels. For example, if we look 

at the west portion of the Isola Bocca d’Anfora in the Grado Lagoon (Italy) (figure 4.10), we count 

approximatively 400 pixels inside the sandy beach! 

 This example shows clearly that in general we are dealing with a very large amount of pixels 

and that visual inspection and classification of coastal areas by the only human action is not an 

affordable effort. We have to use the aid of machine learning techniques to overcome this problem. 

The open source Python library scikit-learn (https://scikit-learn.org/stable/index.html) (figure 

4.11) is a useful tools to develop simple codes to analyse raster and classifying their pixels, i.e., 

grouping together pixels that shares a common feature. As already explained, we study pixels by 

https://scikit-learn.org/stable/index.html
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analysing their spectra. Thus, by classifying pixels we mean collecting together all the pixels with 

similar spectral shape.  

 

 

 

Figure 4.10. Left: atmospheric corrected Level-1C product on the 12th September, 2021, displaying 

a view of the Grado Lagoon. Right: the same area clipped with a polygon encircling the west part 

of the Isola di Bocca d’Anfora. The red contour highlight the sandy beach where we have counted 

the total amount of pixels inside lying inside it.  
 

 

 

 
Figure 4.11. Left: screenshot of the home page header of the scikit-learn library. Right: the 

main menu of the User Guide [26]. 

 

 

 From the set of scikit-learn proposed machine learning algorithms, we adopted the 

unsupervised learning ones. Unsupervised techniques are able to classify objects but cannot establish 

their nature, i.e., if we are looking at a picture made by yellow and red dots, unsupervised methods 
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will find out that there are two different groups of objects but will be unable to say that they are 

colours and especially what colours.  

We use unsupervised algorithms to classify spectra we don’t know a priori what we are looking on 

the ground and in particular we don’t know the shape of marine litter spectra.  

However, we don’t move totally blindly when analysing a coastal environment and some prominent 

features, such as seawater, sand, Mediterranean scrublands … are easily recognizable. So, we can 

adopt a “semi-supervised approach”, as it is defined in literature, that is the technique of apply 

unsupervised methods on a “training area”, then label the extracted classes and use such labels to 

classify a completely new area. Due to the lack of the working time needed to develop, test and apply 

a fully operative Python algorithm reproducing this technique, we have to perform the labelling phase 

and the classification of the new areas by hand, thus we have built a “semi-automatized” semi-

supervised approach. Here we lists the steps to perform this operation: 

 

i) Unsupervised classification, with a Python code, of a training area; 

ii) manual labelling of the spectral signatures of the founded classes; 

iii) enrichment of a spectral database with the founded classes; 

iv) unsupervised classification, with a Python code, of a new area; 

v) manual labelling of the spectral signatures of the new classes by looking at the classes in 

the spectral database. 

 

In the next section we recall briefly the unsupervised techniques adopted for our work and describe 

more in detail how we can build the database of spectral signatures from selected training areas. 

 

 

 



 
 
 

 4

4
3 

Selection of an effective unsupervised classification methods. 
 

Several tutorial and research articles indicates the 

unsupervised K-means technique as the more simple 

and suitable technique to classify satellite images.  

K-means is a clustering algorithm, i.e., it uses as input 

the expected number of classes N we expect to have in 

a sample and then it try to group sample members to 

match this requirement. In statistical terms, the algorithm try to minimize inner variance of points 

when grouped in a set of N groups [27]. 

However, we have found that K-Means technique don’t perform well with our set of spectral data 

and we have abandoned it. The main problem of K-Means is that it cannot handle well outliers. 

Outliers are those points of a sample that are statistically outside the point distribution. Since marine 

litter spectra are expected to be outliers, of course with the use of this algorithm we are going to miss 

them. We have also tested the performances of the algorithm in doing a good classification of pixels, 

finding bad results. Here we show as example the results of the classification of a maritime area near 

the town of Duino (Italy) where there is a fish farming made of 58 floating farms (figure 4.12).  

 
  

Figure 4.12. Left: Google Maps Satellite view of the fish farming (bottom left) in front of the town 

of Duino (top right). Right: photo of a fish farming depicting the floating circles of the farms 

(credits: Jebulon-Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=53116580) 
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We selected the usual tile of Sentinel-2 Level-1C product on 12th September 2021, clipping it with 

10 circular polygons to select 10 random circles.  

Applying the K-means algorithm over this selection (to predict the best number N of classes as input, 

we have used the silhouette score metrics, which is described in details at the scikit-learn webpage: 

https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html) we 

obtain a value of N = 9 and the clipped circles appears classified as shown in figure 4.13: 

 

  
Figure 4.13. Left: position of the 10 random circles. Right: classification results for the clipped polygons. 

 

 

Alongside the classification, we save in separate folders the plots of all the pixel spectra of each class. 

This allow us to visually check the internal coherence of the class, i.e., verify that all the spectral 

shapes are similar. The following table shows how the internal coherence is around 50% - 60% for 

several classes.  
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These are not acceptable results. The figure below shows that in class 3 the algorithm has grouped 

together 6 different spectral shapes (figure 4.14)!  We have also tested the increasing the number N 

of cluster, but it have not shown an improvement of the internal coherence.  

 
 

 
Luckily, consulting the scikit-learn User Guide, we have 

found an alternative unsupervised technique that work 

better than K-Means and reach very good results in the 

internal coherence parameter. This new technique is the 

Agglomerative Hierarchical Clustering (AHC) [28]. The 

principle of work of this technique is the following: the 

algorithm tries to cluster points following ‘decisional trees’, 

i.e., making dendograms. At start, each point is treated as a 

one-component cluster, then the algorithm recursively 

Example of dendnogram. The first two 

branches are on the top and then they split 

into more branches groing  downward. 
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cluster points according to a distance threshold. This method allow us to extract outliers and we can 

also make classes composed by a single member. As for K-Means, the AHC method requires to give 

as input the number N of expected clusters. If we look at the classified ten polygons we obtain far 

better results than K-Means. 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Only three classes shows a medium internal coherence and only one class has bad results. This hint 

us of the necessity of a second manual screening of the classes, i.e., we look at medium-low internal 

coherence classes and manually divide into more new subclasses the pixel spectra. With this operation 

we obtain a good set of classes and for each one we can compute their spectral signature. We are 

ready now to process training areas and extract spectral signatures of the main ground features of a 

coastal environment, i.e., making a spectral database to use as a collection of training classes to be 

used to manually check if in new areas there are potential marine litter pixels. 
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5.1 Analysis of training areas 
 

 The steps described in the previous chapter have shown how we get spectral signatures from the 

classification of pixels. Now we describe the extraction of spectral signatures from main 

environmental features on a coastal area that has been selected to have a good control on the ground-

truth of the imaged area. Here we provide a scheme of the steps we have to perform to analyse a 

training area using both the HCA algorithm and the manual filtering (when it’s needed) and get as 

output a set of spectral signatures. 

 

 

 

As example, we presents our results for the training area of Isola Bocca d’Anfora, already cited in 

figure 4.10. This place is a good training area since it’s located in the middle of the Grado Lagoon, 

far away from urban settlements and inhabited. We have studied a clipped area from the Sentinel-2 

Level 1C tile on 20th of May, 2021. The area of study presents a sandy beach surrounded by 

Mediterranean scrubland on the back and seawater on the front and on the left side. Respect to figure 

4.10 it can be seen that there is a change of the seawater position, which is disappeared from the 

middle sections of the picture: this is due to low tide on the 20th of May. 
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When processing this area with the AHC algorithm we find a reasonable number of classes with a 

good internal coherence if we input N = 50. Once the algorithm has made the classification, we obtain 

a colourful map showing the classified pixels and their position: 

 

 

 

 Here starts the most time consuming part of the work: by comparing the grouped pixels place 

and the RGB preview of the area, we try to deduce what was the environmental feature on the ground 

producing the observed spectral signature. At the end of this process, for this scenario, we have 

identified 4 main features: seawater (SEAW), sand (SAND), Mediterranean scrublands 

(SCRLANDS), intertidal zone (TIDAL). We report here as example the first spectral signature of 

each category and the position of the group of pixels producing it. Other spectral signatures are 

attached to the deliverable data folders. 
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Example of the sand spectral signature. Example of the Mediterranean scrubland spectral 

signature. 

  

Example of seawater spectral signature. Example of the intertidal zone spectral signature. 
 

 

The positon of the pixels producing the four spectral signatures shown above.  
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5.2 Search for marine litter hotspots on selected beaches  
 

Based on our knowledge of the marine litter phenomenon and the technological limits in using the 

Sentinel-2 mission, when we look at a coastal area we can label a pixel as a potential host of marine 

litter if one or more of the following conditions are satisfied: 

 

1) The pixel shows a spectral shape that is atypical respect to the “reference classes” of our 

spectral database; 

 

2) The pixel is placed in an area near the coastline, including the intertidal zone (if we are 

analysing a day with the seawater in low tide condition, we could look at submerged litter); 

 

3) Pixels are sparse or form a little cluster localized in a small part of the whole area of study; 

 

Conditions from 1 to 3 help us to define a methodology to afford the analysis of a beach and select 

the pixels having the highest probability of having marine litter inside: in a shoreline scenario, we 

select a group of pixels, then we look at our spectral database (condition 1) and/or at the spatial 

position of the pixels (condition 2) to discard such pixels, the remaining ones, if also satisfies 

condition 3), are identified as potential marine litter pixels. 

Once we found all the potential marine litter pixels, we can compute the ratio between the total 

amount of them (Npm , “number of potential marine litter”) and the total amount of pixels of the 

analysed coastal area (Ntp , “number of total pixels”), according to the formula: 

 

𝐹𝑃𝑚𝑙 =  
𝑁𝑝𝑚

𝑁𝑡𝑝
 

 

This will give us the fraction of pixels affected by marine litter in such area (FPml ). In the next section, 

we describe in detail how we compute this index by analysing a beach zone near the maritime city of 

Grado, in the Friuli Venezia Giulia Autonomous Region (Italy), on the 12th September, 2021. 



 
 
 

 5

5
1 

5.1 How we determine the fraction of potential marine litter pixels in a stretch of coast near 
the area of “Grado Pineta” in Grado (Italy) 
 

In this section we describe step-by-step the procedure to compute the fraction of pixels that have 

spectral signatures of potential marine litter. 

 

1. Selection of the area of study 

 The area of study is 

a coastal zone near the 

residential suburb named 

‘Grado Pineta’ in the 

proximity of the city of 

Grado (see the Google 

Maps satellite view of the 

Grado Island). We selected this beach because it is one of the beaches studied by the on field 

monitoring campaigns for the MARLESS project. 

The next pictures show in detail the extension of the area of study: on the left is a screenshot from 

Google Earth, the red line contours approximatively the area of study; on the right we show the same 

area as seen by Sentinel-2. The area of study is limited northeast by the beach concessionary 

“Spiaggia Villaggio Ca’ Laguna”, on the south by the beach concessionary “Stabilimento Costa del 

Sol”. The depth of the polygon is determined to satisfy two conditions:  

 

a. due to the spatial resolution uncertainty, we want to be sure to include all pixels 

affected by shore pixels; 

 

b. we want to include large portions of ‘macro areas’ such as scrublands, sand, seawater, 

etc., to be sure to not confuse hotspots of such features with marine litter. 
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The analysis we present is performed on the level-1C Sentinel-2B product of the 12 September 2021. 

The area of study was cloud free and according to the image processing chain explained in the 

previous sections we pre-processed the product.  The RGB preview of the output tiff, containing 502 

pixels, is shown below. 
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2. Application of the semi-supervised classification algorithm  

The application of the semi-supervised algorithm suggests the presence of 30 classes (see the left 

image in the box below). Manually filtering the spectral pixels let us to identify several new sub-

classes (see the right image in the box below). At this point, we plot the mean spectral signature of 

each class along with the shape of the pixel spectra at the first and third quartile of the statistical 

distribution. This help us to quick check the goodness of the filtering.  

 

 

 
 

3.  Finding potential marine litter spectra classes 

 We are now ready to investigate each class to find out potential marine litter pixels. We follow 

the receipt listed at the start of this chapter to discard classes that are unlikely to be associated to 

pixels hosting marine litter. First, we have to establish the extension, in terms of pixels, of the area 

that is interested by the phenomena of accumulation of debris by sea currents and winds. Visually 
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comparing the Google Earth screenshot of the area of study and the Sentinel-2B RGB preview we 

identify a group of pixel classes matching our requirements. Hereafter we refer to this area as the 

‘Grado Pineta Beach’. Counting the number of pixels inside Grado Pineta Beach we get Ntp = 246.  

Now we use the reference classes to compare them with the mean spectral signatures of all the Grado 

Pineta Beach classes. We remind that the reference classes are those we have determined from the 

analysis of the Anfora and Fossalon beaches. The comparison process allow us to discard the majority 

of the classes (see figure for the remaining classes after this step). Following the working principles 

stated before, we should now search for pixels that are unlikely covered by marine litter originated 

from the sea, but we cannot find a suitable class satisfying this condition. Thus, we can compute the 

total amount of pixles in the remaining classes, Npm = 22.  
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4. Computing the probability of the area to be a marine litter hotspot 

Following the definition given in beginning of this section, we can compute the Grado Pineta Beach 

coefficient FPhsp  : 

𝐹𝑃𝑚𝑙 =  
22 

246
= 0,089 

𝐹𝑃𝑚𝑙,% =  8,9 %  

 

 

 

5.2 Results of the search of marine litter with Sentinel-2 in two MARLESS beaches 
 

 We have done the analysis presented so far on two beaches, one is the already presented Grado 

Pineta beach, and the other is a stretch of coast near the Brenta mouth called “Isola Verde” in the 

Veneto Region. These two beaches are interested by the MARLESS on field monitoring campaign 

and have been analyses in D3.3.2 with the numerical simulation too. These are sandy beaches that 

are ‘large’ in terms of ‘pixel extension’, this property let us to collect statistically robust spectral 

signatures from the environment and to have a more clear distinction of the boundaries between the 

various parts of the beach. Moreover, these areas are not occupied by beaches concessionaries 

buildings neither are too close to urban areas or roads. Thus we can assume that changes on the 

beaches surfaces are caused only by the action of the natural elements or by sporadic cleaning 

campaigns. 

 Under these assumptions, we have analysed the two areas using the methodology described 

in the previous section performing the research of marine litter in different days of the year, excluding 

the summertime for the obvious reason of having a high probability of area occupancy by sun bathers. 

Hereafter we show an example of clipped area of the Isola Verde beach and then we report, in table 

5.1 and table 5.2, the results of the search of potential marine litter pixels on these two beaches. 
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Date Npm Ntp FPml FPml,% 

24-02-2021 22 246 0.089 8.9 

20-05-2021 16 231 0.069 6.9 

12-09-2021 19 239 0.079 7.9 

16-12-2021 39 234 0.167 16.7 

Table 5.1. Results for the Grado Pineta beach. 

 

Date Npm Ntp FPml FPml,% 

24-02-2021 135 443 0.305 30.5 

20-05-2021 111 415 0.267 26.7 

01-12-2021 122 466 0.261 26.1 

Table 5.2. Results for the Isola Verde beach. 
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PART 2 

MAPS OF MARINE LITTER 
HOTSPOTS PROBABILITY  
 
 
 
 
 
 
The identification of beaches, which are potential marine litter hotspots, is based on the integration 

of the two main sources of information considered in the MARLESS project, namely the satellite data 

and the numerical simulations of marine litter dispersion. Since those sources are coming from quite 

different approaches, we have considered worth to avoid to merge their contribution in one scalar 

index, which would represent the sum of the information of the hotspot potential.  

According to this choice, the identification of a marine litter hotspot is conducted in plane where the 

two dimensions are related to the two sources of information. Two indexes are identified for each 

beach in study. The x-axis reports the index summarizing the results of the numerical simulations, 

the y-axis reports the index computed thanks to the satellite image analysis. As a consequence, the 

analysed beach will be represented by a point on the plane. 

It is expected a correlation between the indexes, since a hotspot should be identified by means of both 

the sources of information. Thus, beaches with high probability to be a hotspot will lie far from the 

plane origin in the upper right corner, while beaches expected to be marine litter free will cluster very 

close to the origin of each axes that is in the lower left corner. The agreement on the hotspot potential 

for both indexes, that is a high correlation, results in points populating a row in the first quadrant of 

the plane. On the other hand, points belonging to beaches that are far from the linear path connecting 

the area of potential hotspots with the plane region of clean beaches are considered of quite difficult 
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interpretation, because of the disagreement of indexes. Those points represents not-classifiable 

beaches. 

 
 
Hereafter we present the results from the numerical simulations and the satellite analysis and then 

their integration in a map of probability. 

 

1. Numerical models results: 
 
 As far as the numerical simulation index is concerned, this index is calculated considering the 

results of the D3.3.2 deliverable, i.e., the deliverable concerning the forward dispersion of marine 

litter. Two statistical parameters are considered: daily_max(median) and the daily_median(median). 

For each day of simulation, we compute the median from the hourly count of the beached particles; 

then, from this indicator, we calculate the two statistical parameters considered from all the days of 

simulation: the maximum and the median. These parameters are computed for both the beached 

particles on the beaches in study and for the entire Adriatic basin, i.e. considering the beached 

particles on the overall Adriatic coasts. The parameters calculated for the Adriatic basin are necessary 

to find the constraints from which a beach can be considered with a low/intermediate/ high probability 

of accumulation of marine litter. Since the satellite image pixel has a spatial resolution of 10*10 m2, 

the simulation parameters too are expressed in 10*10 m2 both for the beach in study and both for the 

overall Adriatic. For the former we considered the length and the width of the coast on which the 

Numerical simulation index 

Satellite a
n

alysis in
d

ex 
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beached particles are counted, for the latter we considered the shoreline length of the Adriatic Sea 

which is of about 10 000 km.  

In conclusion, the Numerical simulation index is going to represent the maximum number of elements 

found on 10*10 m2 on a day and the median number of elements found on 10*10 m2 on a day. 

The constraints values found for the overall Adriatic basin are reported in the following table:  

 

Maximum constraint (elements on 100 m2) Median constraint (elements on 100 m2) 

0.16 0.08 

 
 
From these values, we consider a beach with different probability of accumulation: 

 

 a low probability of accumulation if the calculated parameters are going to be lower than the 

median constraint;  

 

 an intermediate probability of accumulation if the calculated parameter are going to be 

between the median constraint and 3 times this constraint;  

 

 a higher probability of accumulation if the calculated parameters are going to be higher than 

3 times the median constraint.  

 

This parametrization is shown in the graph below to better visualize the concept. 
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 On the table below, the results obtained from the beaches in study are shown together with 

the two constraints found analysing the overall Adriatic Sea beached particles. The studied beaches 

are coloured in green if they have a low probability of accumulation, in orange if they have an 

intermediate probability of accumulation and in red if they have a high probability of accumulation. 

 
 

Adriatic Sea shorelines: 
first constraint 

0.08 # elements 100 m2 

Adriatic Sea shorelines: 
second constraint 

0.08*3 = 0.24 # elements 100 m2 

 
 

 Median # elements 100 m2 Maximum # elements 100 m2 

Grado Pineta beach 0.76 1.30 

Isola Verde beach 1.45 3.31 

Riccione beach 0.19 0.40 

Sole Luna beach 0.14 0.33 

Opcina Umag beach 0.09 0.11 

Trstenik beach 0.01 0.01 

 
 
 
 
 

Numerical simulation index 
(# elements in 100 m2) 

0 Median = 0.08              

High probability 
of accumulation 

Intermediate 

probability of 

accumulation 

Low probability of 

accumulation 

Median = 3*0.08              

First constraint             Second constraint             
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2. Satellite analysis results 
 

 As discussed in the chapter 5 of this document, we have analysed two MARLESS beaches 

in different days of the year. For each case we have calculated the parameter FPml that describes how 

much (potential) marine litter pixels we have found on a beach. We can go further in the interpretation 

of this parameter by noticing that it indicates also the level of probability of an area to be occupied 

by marine litter. We can establish the following interval of probability of having low, intermediate or 

high probability of accumulation of marine litter on a beach:  

 

 

 

 

 

 

 

 

 

 For each beach we compute two FPml values: the max and the median, and we will use these 

two values to the integration with the numerical simulations results. Here we report the data for the 

two MARLESS beaches we have analysed.  

 

 Median FPml,% Maximum FPml,% 

Grado Pineta beach 8.4 16.7 

Isola Verde beach 26.7 30.5 
 

 
 
 
 
 

FPml,% 0 15 % 

High probability 
of accumulation 

Intermediate 

probability of 

accumulation 

Low probability of 

accumulation 

30 % 

First constraint             Second constraint             
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3. Integration of the numerical model and the satellite analysis results in the 
maps of probability 

 
 By combining the two indexes, a probability map will result: the intersection of the respective 

parametrization will show the combined areas in which a specific beach can fall. The concept is 

shown in the figure below. If the beach will fall on the green area (i.e., the low probability one), it 

will have a low probability of accumulation, and so on with the orange area (i.e., the intermediate 

probability one) and the red area (i.e., the high probability one). Otherwise, if the beach will fall in a 

not combined area the result is going to be classified as not-classifiable. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Numerical simulation index 
(# elements in 100 m2) 

0 Median = 0.08              

High probability 
of accumulation 

Intermediate 

probability of 

accumulation 

Low probability of 

accumulation 

3*Median = 0.24              

30% 

100% 

FP
m

l,%  

15% 
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Considering the results obtained for the Grado Pineta beach, the probability map obtained is the 

following: 

 
  

 As it can be noticed, from the numerical model point of view the beach fall in the high 

probability area, while from the satellite point of view the beach fall in the low probability one: in 

conclusion, the Grado Pineta beach is considered not-classifiable. 

 

Considering now, the results obtained for the Isola Verde beach, the probability map obtained is the 

following: 

 

Numerical simulation index 
(# elements in 100 m2) 

0 Median = 0.08              

High probability 

Intermediate probability 

Low 

probability 

3*Median = 0.24              

30% 

15% 

100% 

0.76              1.30             

8%              

17%              

FP
m

l,%  
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 As it can be noticed, from the numerical model point of view the beach fall in the high 

probability area, on contrary from the satellite point of view the beach fall in the intermediate 

probability one. In conclusion, the Isola Verde beach is considered not-classifiable but considering 

the error bars extension of the satellite index the result doesn’t exclude the possibility of this beach 

to be a high probability accumulation area. 

 

 
 
 
 
 

Numerical simulation index 
(# elements in 100 m2) 

0 Median = 0.08              

High probability 

Intermediate probability 

Low 

probability 

3*Median = 0.24              

30% 

15% 

100% 

1.45              3.31             

26.7%              

30.5%              

FP
m

l,%  
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4. Integration of these results with the in situ monitoring campaigns 
 
 A normalization of the two indexes is going to improve the power of the two dimensional 

approach in the hotspots identification. In fact, if both indexes range over the same domain, for 

example [0,1], the correlation between the indexes is described by points lying on the bisector of the 

first quadrant of the plane. To this end, we linked to a beach a relative value with respect to the most 

polluted beach (which is going to have a maximum value of 1) and the less polluted one (which is 

going to have a minimum value of 0). The information of the most and less polluted beaches will 

come from the in situ monitoring campaigns measurements. 

Moreover, we aimed to verify if the results obtained with the numerical simulation are linearly related 

to the one of the in situ monitoring campaigns. To prove this, we compute the ratio between the values 

obtained for two different beaches for both the data; for the numerical simulations we use both the 

median and both the maximum number of elements in 100 m2 while for the in situ monitoring 

measurements we use the total amount of litter found in all the campaigns divided in categories. The 

categories used for the in situ data are shown below: the first category (from now on called bottles) 

includes all the item shown in the first image; the second category (from now on called nets) includes 

the marine litter shown in the second image; the third category (from now on called plastic pieces) 

includes the items shown in the third image. 
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The data is shown in the table below: 

 

Beach 

Numerical 
simulation:  
Median # 
elements 

100 m2 

Numerical 
simulation:  
Maximum # 

elements 
100 m2 

Total 
amount of 

bottles 
found: 

Total 
amount of 
nets found: 

Total 
amount of 

plastic pieces 
found: 

Grado Pineta 0.76 1.30 48 46 183 

Isola Verde 1.45 3.31 52 353 1169 

Opcina 
Umag 

0.09 0.11 126 160 869 

Trstenik 0.01 0.01 665 35 765 
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The following ratios have been computed and they are shown in the table below: 

 

Ratios 
𝑮𝒓𝒂𝒅𝒐 𝑷𝒊𝒏𝒆𝒕𝒂

𝑰𝒔𝒐𝒍𝒂 𝑽𝒆𝒓𝒅𝒆
 

𝐓𝐫𝐬𝐭𝐞𝐧𝐢𝐤

𝐎𝐩𝐜𝐢𝐧𝐚 𝐔𝐦𝐚𝐠
 

𝑴𝒆𝒅𝒊𝒂𝒏 # 𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒔 𝟏𝟎𝟎 𝒎𝟐𝒃𝒆𝒂𝒄𝒉𝟏 

𝑴𝒆𝒅𝒊𝒂𝒏 # 𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒔 𝟏𝟎𝟎 𝒎𝟐𝒃𝒆𝒂𝒄𝒉𝟐
 0.52 0.11 

𝑴𝒂𝒙𝒊𝒎𝒖𝒎 # 𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒔 𝟏𝟎𝟎 𝒎𝟐𝒃𝒆𝒂𝒄𝒉𝟏 

𝑴𝒂𝒙𝒊𝒎𝒖𝒎 # 𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒔 𝟏𝟎𝟎 𝒎𝟐𝒃𝒆𝒂𝒄𝒉𝟐
 0.39 0.09 

𝐁𝐨𝐭𝐭𝐥𝐞𝐬 𝐟𝐨𝐮𝐧𝐝𝒃𝒆𝒂𝒄𝒉𝟏 

𝐁𝐨𝐭𝐭𝐥𝐞𝐬 𝐟𝐨𝐮𝐧𝐝𝒃𝒆𝒂𝒄𝒉𝟐
 0.92 5.28 

𝐍𝐞𝐭𝐬 𝐟𝐨𝐮𝐧𝐝𝒃𝒆𝒂𝒄𝒉𝟏 

𝐍𝐞𝐭𝐬 𝐟𝐨𝐮𝐧𝐝𝒃𝒆𝒂𝒄𝒉𝟐
 0.13 0.22 

𝐏𝐥𝐚𝐬𝐭𝐢𝐜 𝐩𝐢𝐞𝐜𝐞𝐬 𝐟𝐨𝐮𝐧𝐝𝒃𝒆𝒂𝒄𝒉𝟏 

𝐏𝐥𝐚𝐬𝐭𝐢𝐜 𝐩𝐢𝐞𝐜𝐞𝐬 𝐟𝐨𝐮𝐧𝐝𝒃𝒆𝒂𝒄𝒉𝟐
 0.16 0.88 

 
As it can be noticed from the results shown in the last table, the values obtained from the simulations 

are not linearly related to the ones obtained in the in situ campaigns measurements. Besides 

approximations adopted in the simulation approach and the uncertainty characterizing the remote 

sensing imagery, the in situ measurements too are affected by too many variables: for example, the 

beaches of Trstenik and Opcina Umag are not inside the Marine Strategy so they had never been 

cleaned-up by the colleagues before the MARLESS project, on contrary Grado Pineta and Isola Verde 

beaches are inside the Marine Strategy (so they have been cleaned more often and the marine litter 

are removed more often). In conclusion, we do not have enough information to compare the in situ 

data measurements and the simulation results. 
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CONCLUSIONS  
 
 
 The method defined and developed thanks to the MARLESS project to generate information 

to create maps of probability shows a great potential, in spite of the uncertainties that are implicit in 

both the numerical simulation and the satellite data approaches.  

The method to integrate information of potential hotspots, that are coming from very different sources 

of information, has the capability to reveal also the level of correlation between the indexes which 

are summarizing the results coming from each of the approach. 

First, its extensive application to all the beaches along the Adriatic coasts is just a matter of 

computation, since satellite information covers the whole cooperation area and the computational 

time, which was spent to simulate trajectories and back trajectories of marine litter pieces, can be 

tackled with medium size computational infrastructures. All of these warranty the transferability of 

the MARLESS method to further explorations, also in other marine basins. 

Second, the improvement of the identification power of the indexes used in the hotspot identification, 

can proceed independently on both of them, resulting in a reduction of the uncertainty in the hotspot 

identification. Furthermore, the normalization of the indexes, thanks to the in situ marine litter 

monitoring, adds the value to the interpretation of the congruence of the hotspot identification by 

means of the two independently approaches, because of the straightforward interpretation of the 

points representing the beaches on the hotspot identification plane. 

The reduction of uncertainty, in the identification of the hotspots, is foreseen coming from the new 

generation of hyperspectral satellite, that are going to bring the required details in the spectral 

information associated to each image pixel, together with the increase of spatial resolution. From the 

numerical model simulations, the reduction of hotspot index is expected to come from a better 

representation of beaching and refloating parametrization in addition to a refinement identification of 

the potential sources, which are responsible of marine litter input in the sea. 

In the end, we can say that the application of this method to rank the beaches according to the hotspot 

indicator leads naturally to the creation of probability maps of marine litter hotspots. 
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