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● EXECUTIVE SUMMARY 
 
The work carried out for addressing this project objective started with a deep and detailed analysis 
of the pilot site’s context. All criticalities and general take-aways have been analyzed and described 
for the subsequent definition of a preliminary solution.  
 
The preliminary solution achieved very good results for what it concerns the night frames (those 
characterized by higher standardization) but proved to be not sufficient for what it concerned day 
frames, where variability and complexities connected to sun rays makes it harder to compute the 
water level in a reliable and accurate way using traditional image processing techniques. 
 
This preliminary attempt allowed the definition of a more advanced solution, which exploits 
Artificial Intelligence, specifically Deep Neural Networks, for segmenting frames into 
water/background categories. This segmentation allows for precise and accurate water level 
computation in both night and day frames. Moreover, this solution has been evaluated in terms of 
processing speed and cost, in order to understand feasibility of edge implementation of it.  
 
As conclusion of activities within the project scope, the proposed solution, developed and tested on 
the pilot site, has been implemented into a containerized version. A docker as the one we created, 
can be easily shared with those in charge for data acquisition and storage, without the need for 
them of difficult and complex integration of the solution into data management architecture. 
Specifically, the docker can run easily by taking as input an image file and outputting the computed 
water level, as a black box solving the problem of water level extraction from images.  
 
The overall results achieved on the pilot site, and the characteristics set for the final solution, makes 
it adaptable to new sites by means of adaptation in terms of neural network training and site’s 
ortho-rectification parameters, while the main framework is always valid also when we change the 
application site.  
 
  



 
 
 

 

 

CHAPTER 1. – Context Analysis 
 
Solution Requirements 
Automatic monitoring solutions are at the base of developing smart Early Warning (EW) systems for 
flood hazards, which usually exploit, among relevant input data, the water level of rivers. Commonly 
adopted technologies for monitoring river flood are pressure transducers, rangefinders, ultrasonic, 
radar as well as optical sensors. Some of these technologies require frequent calibration, otherwise, 
the accuracy becomes very low when objects like wooden logs pass underneath, or when the wind 
causes waves. Moreover, these technologies are prone to measurement errors which could happen 
especially during dry riverbed and during extreme weather conditions like heavy rainfall, which are 
those conditions to be controlled more strictly for flood monitoring purposes. 
 
The proposed solution has been created with the following requisites in mind, set together with the 
entity in charge of disaster management: 

a. be fully automatic. 
b. be able to detect the water level with an accuracy of ±3 cm. 
c. require minimum site-specific customization, except for the initial in-site installation. 
d. be able to workday and night. 
e. be reliable even during extreme weather conditions. 
f. transmit to the central server high-quality data only. 
g. be able to work in sites where the gauge is made up of multiple pieces, framed all together 

by the camera. 
 
 
Pilot Site Identification 
The development of an automatic river flood monitoring solution based on smart video/image 
processing is strictly connected to the availability of a pilot site, able to provide data for both 
solution prototyping and testing. To carry out the activities required for sketching a smart solution, 
a pilot site where both gauge and camera were already installed has been jointly defined with 
Marche Region Protezione Civile . 
 
The site is particularly interesting also from a flooding point of view, being a site inside the city 
center of Senigallia, where the Misa River passes (See Figure 1). This river is sadly known for its 
frequent and dangerous floods. 



 
 
 

 

 
Figure 1: a snapshot taken by the camera by changing its set-point respect to the one used for flood monitoring purposes. 

 
In the pilot site one RGB camera, with auto-Infra Red for acquisitions during the night, frames the 
gauge from an optimal perspective, which is almost-front view as can be noted on the two sample 
frames shown in Figure 2 
 

 
Figure 2: sample day and night frame acquired by the camera in the pilot site. 

 
 



 
 
 

 

Dataset Definition and Organization 
The data acquisition system in the pilot site is available since almost a year at the beginning of the 
project. This eases the development and organization of a pilot dataset, useful for sketching and 
prototyping the smart automatic image processing solution. 
Specifically, we can exploit over sixteen thousand images, collected over the past year with a 
sampling rate of 1 frame every 30 minutes.  
 
 
Analysis of Criticalities 
Preliminary exploratory analysis of the dataset allowed us to identify some criticalities connected 
to the creation of the automatic flood monitoring solutions.  
To begin with, the camera has a non-frontal view with respect with the gauge. Ortho-rectification is 
required for mimicking frontal view and obtain images where the water line is perfectly horizontal, 
which will bring to an optimal and reliable water-level estimation. We solved this issue by defining 
ex-post the ortho-rectification parameters which have been then embedded in parameters of a 
roto-translation able to ortho-rectify original frames (see Figure 3). 

 
Figure 3: ortho-rectification of a sample frame snapped in the pilot site. 

 
Another criticality identified regards the quality of data. Night frames are very stable and similar to 
each other. Day frames suffer from sunrays inclination with respect to the camera, and can possibly 
bring to overexposed frames, or snap characterized by heavy light spots that could make image 
analysis harder. Lastly, weather (especially bad weather conditions) has an impact on image quality 
since raindrops, snowflakes, or fog, could lower image readability and definition (see Figure 4). 



 
 
 

 

 
Figure 4: sample overexposed frame and sample bad weather frame. 

The general purpose guiding initial solution development has been to keep the analytical solution 
as simple as possible, in order to be light from a computational point of view and possibly in line 
with potential edge implementation of the solution as a future step. For this reason, we are going 
to present the initial sketch solution that mostly ground on traditional image processing techniques. 
By analyzing weaknesses of this solution, we identified potential improvements that have been 
included in the final solution, whose performances and characteristics makes it reliable enough, 
suitable for future edge implementation, and hence a definitive solution. 
  



 
 
 

 

CHAPTER 2. – Sketch solution 1 
 
In order to compute the water level during the entire day with an accuracy of ±3 cm, image 
processing should rely on good quality images, but it is easy to have some bad quality frames, as 
show in the previous section, either due to bad weather or to contingencies connected to the 
unconstrained and non-standardized context of use. Therefore, we structured the overall solution 
based on two modules. The first module takes as input a frame snapped by the V-IoT device, and 
classifies it as either day, night, or bad quality (either overexposed, blurred, or with weather related 
artifacts), through light and fast computations. The second module has the objective of computing 
the water level, exploiting as input both the snapped frame and its category computed by the Image 
quality check module. This is extremely important since day and night frames have completely 
different characterization, which reflect on different steps required for computing the water level. 
The proposed solution is very simple and fast. In the following subsections we are going to analyze 
performances achieved by this solution. 
 
 
MODULE 1: Image Category Classifier 
The first module involves steps for classifying a frame as either night, day or bad quality, according 
to the flowchart presented in Figure 5. 
 



 
 
 

 

 
Figure 5:image quality check module flowchart 

We analyzed correlation between some metrics extracted from frames snapped, and the image 
classes, finding some interesting strong relations. The metrics evaluated are: 

● Mean of all pixels of RGB color channels (MNall); 

● Mean of the saturation channel of the image converted into HSV color model (MNs); 

● Root Mean Square of RGB channels (RMSall); 

● Root Mean Square of saturation channel (RMSs); 

● Maximum inter-pixel difference, computed as the maximum along all the pixel intensities, minus 
the minimum (delta); 

● Variance of the image histogram (VARih); 
 
Specifically, MNall is strictly discerning the overexposed frames from the other classes. MNs and 
RMSs were strongly different between day frames and the other classes, as could be expected since 
during the night the camera acquires through auto-IR cut filter and the resulting RGB image is like a 
gray-scale one. The night frames have very low saturation thus resulting very similar to frames 
snapped during bad weather or in case of bad quality images, where the saturation gets low too. 



 
 
 

 

Another interesting connection has been found for the delta metric, suitable for discerning between 
bad quality, against good quality both day or night frames. 
In this preliminary attempt, frames categorized as bad quality have been discarded from subsequent 
analysis. 
 
MODULE 2: Gauge Detection And Water Level Computation 
Once an image is categorized as either day or night, the following step is the same for both 
categories: the ortho-rectification of the image. Through this step, we pass from an image where 
the gauge is distorted, due to the relative perspective of the camera and the gauge, to a rectified 
image where the gauge seems frontally framed. Specifically, this procedure has to be set for each 
site, and starts with the identification of the four rectangle’s vertices and the rectified rectangle 
associated to a perfect frontal view. Subsequent steps are category specific. Specifically, after the 
rectification of a day frame these steps are performed: 

D1 top hat filtering, using as structuring element a disk of 15 pixels radius; 
D2 adjust image intensities, saturating top and bottom 1% of all pixel values; 
D3 binarize the image using a fixed threshold (45); 
D4 eliminate from the binary image those connected regions having area lower than 50 pixels, 

to reduce noise; 
D5 fill the holes; 
D6 perform morphological closing using as structuring element a line of 30 pixels; 
D7 compute the percentage of white pixels for each row over the columns; 
D8 compute the adaptive threshold as mean minus one standard deviation of the row 

percentages; 
D9 start from the bottom and find the first line where the row percentage exceeds the 

threshold, which is the water level; 
D10 draw a red line corresponding to the computed water level. 

 
On the other hand, after the rectification of a night frame these steps are performed: 

N1 detection of the gauge and cutting the image;  
N2 median filtering the retained portion;  
N3 extraction from it of 5 thresholds of intensity;  
N4 sharpening by a factor of 1.4; 
N5 clustering based on multiple thresholds computed before; 
N6 clusters’ edges extraction, using Canny algorithm; 
N7 holes filling; 
N8 morphological closing using as structuring element a rectangle of 4 by 15 pixels;  
N9 eliminate from the binary image those connected regions having area lower than 50 pixels, 

to reduce noise; 
N10 holes filling; 
N11 compute the sum of black pixels for each row; 



 
 
 

 

N12 assign to each row the value of 0 if the number of black pixels is lower than 70% of row 
pixels, 1 otherwise; 

N13 find the water level which is the first non-zero line. 
 
Results 
Night frames proved to be very stable and similar to each other, something that allowed to achieve 
good results in terms of extracted water level. 
Day frames on the contrary, are characterized by strong variance in terms of chromatic 
characterization, light rays perspective, and many other variables. This turned out to be critical for 
the reliability pf water level computed. 
 
Results regarding the first module are summarized in the following table: 

 Actual Detected 

Night 6628 6652 

Day 6348 6369 

Bad Quality 532 487 

 
Concerning the second module we decided to divide between “correct water level”, if the computed 
line is no more than 3 cm apart from the actual water line, “small errors” if the computed line is 3 
cm to 10 cm apart from the actual water line, and “heavy errors” otherwise. Results are summarized 
in the following table: 

 Correct Water Level Small Errors Heavy Errors 

Night 6545  35 48  

Day 5300  465  483 

 

  



 
 
 

 

CHAPTER 3. – Final Solution 
Starting from the analysis of strengths and weaknesses of the preliminary solution just presented, 
we decided to seek improvements creating a framework for solving the problem of real-time 
water level monitoring through on-field cameras. The framework aims at both accuracy in the 
water-level computation and at suitability for being implemented on embedded and low-cost 
devices, for its future scalability for the development of reliable widespread sensing networks 
available to public control bodies such as Civil Protection to cope with floods. 
 
The proposed final solution is based on Semantic Segmentation with a Convolutional Neural 
Network and on image coordinates registration with respect to a reference frame. The network 
classifies pixels in the two categories background/water and produces an output binary label 
which is later used to perform level estimation. The rigid transformation was estimated with state-
of-art feature matching-based image registration method, a well known, effective and widely used 
approach in computer vision for image registration in remote sensing applications also. These 
techniques extract significant image points and their associated feature vectors according to the 
chosen type of descriptors. Input and reference image features then are matched according to a 
proper similarity metric thus providing several feature points pairs which are used to estimate 
geometric transform. 
 
Feature matching 
The best trade-off between align errors and computational effort is reached by ORB descriptors 
which thus represent the best alternative for a scalable framework. As a consequence, ORB were 
chosen for image rectification in the level estimation experiments. 
 
Semantic Segmentation 
In order to check the consistency of our framework, at first three of the most popular Semantic 
Segmentation DNN in the context of image water level estimation were tested, namely SegNet, 
FCN8, and Deeplabv3plus: 

● SegNet resumes the typical paradigm of Semantic Segmentation CNN with a 
encoder/decoder architecture. The encoder consists of several blocks each made up of a 
couple of $3\times 3$ convolutional layers and a final MaxPooling which reduces feature 
size. The decoder is symmetric with an Upsampling operation at the end of each block 
which eventually lead to a final feature with the same size as input image. 

● FCN8 has an encoder with same structure as SegNet, however the encoder is not 
symmetric. Furthermore, intermediate encoders' features are re-used by adding them to 
the outputs of decoding blocks, which are formed by successions of $7\times 7$, pointwise 
and transposed convolutions which perform upsampling. 



 
 
 

 

● Deeplabv3plus is a high quality Segmentation CNN, it was developed as a solution to 
several problems in segmentation including object scale variation and accurate localization 
of boundaries. Its major novelty is the atrous spatial pyramidal pooling (ASPP) module, 
which performs features' dilated convolutions with different rates and then concatenates 
the outputs. 

 
Nevertheless, the aforementioned architectures are too computationally and memory expensive 
to be scaled on embedded devices in practice.  
 
For this reason, in addition to these networks a group of three lightweight architectures was 
tested, which balance good classification accuracy with high inference speed and low memory 
occupation: 

● ERFNet includes in both encoder and decoder the so called "bottlenecks" which are 
residual blocks with 2 pairs of horizontal and vertical convolutions in the main path. This 
strategy allows to capture the same spatial information and to reduce computational cost. 

● ENet similarly to ERFNet stacks several bottlenecks in encoder and decoder. ENet 
bottlenecks have many types of convolutions as standard square filters, dilated, horizontal 
and vertical. The main difference with respect to ERFNet however is that ENet reduces the 
number of filters within each bottleneck, leading to thus to a extremely efficient model. 

● FastSCNN was specifically optimized to reduce inference time on embedded platforms. It is 
formed by bottlenecks with depth-wise convolutions between 2 pointwise layers which 
respectively increase the number of filters and bring it back to the same number of input. 

 
 
Results 
Results of image rectification with feature matching in terms of % of wrong aligned images is 
summarized in the following table: 

 SIFT SURF FAST ORB 

day 0.1 1.8 16.4 0.6 

night 0.6 0.2 0.6 0.2 

bad-weather 2.5 15.6 48.6 14.7 

 
The best trade-off between align errors and computational effort is reached by ORB descriptors 
which thus represent the best alternative for a scalable framework. As a consequence, ORB were 
chosen for image rectification in the level estimation experiments. 
 
 



 
 
 

 

Segmentation quality was measured by evaluating average pixel classification accuracy and the 
classical mean Intersection-Over-Union (mIoU) averaged among background/water classes which 
are reported in the following table: 
 
 
 

 Test accuracy mIoU Storage 
cost 

GFLOPs 

Day Night Bad weather Day Night Bad weather 

SegNet 99.22 99.61 95.26 97.71 98.88 86.93 22.707 62.83 

DeepLabv3+ 99.69 99.78 99.78 99.07 99.37 99.28 190.523 26.42 

FCN8 99.03 99.56 98.94 97.18 98.74 96.58 1026.068 173.45 

FastSCNN 99.60 99.75 99.75 98.82 99.30 99.17 15.174 2.43 

ERFNet 99.65 99.75 99.66 98.97 99.28 98.90 24.675 20.91 

ENet 99.55 99.72 99.71 98.66 99.19 99.05 5.760 3.13 

Results achieved suggest that the considered low resource requiring networks could be suitable 
for the proposed water level estimation framework. Among these FastSCNN and ENet are the 
most efficient in terms of storage cost and GFLOPs. 
 
Combining ORB feature matching with ENet, we reach a lightweight solution suitable for 
embedded and constrained devices. Results achieved by this framework prove to be reliable 
enough for making this configuration, the one adopted for pilot-site implementation, as will be 
presented in the next section. 
 



 
 
 

 

 
Figure 6: estimated and real water level for some testing images using ENet and ORB features. 

  



 
 
 

 

CHAPTER 4. – Docker Implementation 
Once defined the solution able to meet all requirements set by us, in terms of both water-level 
computation accuracy and potential to be implemented on embedded devices as a future activity, 
a pilot implementation has been developed for the pilot site.  
 
Among several ways that could bring us to the concrete implementation of the solution, the docker-
based has been selected and implemented. By means of dockers, scalability and ability to work in 
parallel analyzing frames related to multiple acquisition sites is guaranteed. Moreover, docker 
implementation is easy to be maintained and shared. 
 
For these reasons, a docker implementing ORB feature matching and using the trained ENet for 
semantic segmentation of frames snapped has been created and shared with project partners. The 
docker takes as input an image file name and outputs the computed water level according to ORB 
feature matching and ENet presented in the previous section. 
 
Docker’s correct functioning has been tested by the institution in charge for image storage.  
 
 
  



 
 
 

 

CHAPTER 5. Output of the Research 
Based on the work carried out for this project portion, two research papers, one published and 
one under review, have been created by the Research team lead by Paola Pierleoni.  
 

● [2021] Sabbatini, L., Palma, L., Belli, A., Sini, F., &, Pierleoni, P. A Computer Vision System 
for Staff Gauge in River Flood Monitoring. Inventions, 6(4), 1–16. 
https://doi.org/10.3390/inventions6040079 

 

● [under review 2023] Pierleoni, P., Falaschetti, L., Manoni, L., Sabbatini, L., Turchetti, C., and 
Palma, L. A Semantic Segmentation Based Framework for Water Level Monitoring. 
Engineering Applications of Artificial Intelligence (Elsevier). 
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CHAPTER 6. Discussion and Conclusion 
 
The final solution developed for solving the considered problem proved to be reliable, and suitable 
for future edge implementation into Visual-IoT nodes.  
The proposed solution is site specific but organized in a way that makes it easy the scalability to 
multiple different sites with minor adaptations. Specifically, adaptations do not refer to the overall 
framework, which can be considered standardized and general, but only to the network that should 
be retrained on the specific site, and to the ortho-rectification parameters that can be easily defined 
for every new acquisition site with very little efforts. 
 
With these considerations in mind, we can conclude that this activity bring us to a satisfactory proof 
of concepts.  


