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1.2 Weather forecasting in Croatia 

1 Introduction 

One of the goals of the STREAM project is to create new forecasting system for pluvial floods in 

Croatia. One of the project assignments is to perform a detailed analysis of urban flooding in the 
Zadar pilot area and improve the flood forecast system. Specifically, this is planned to be achieved 

by developing a pluvial flood forecast system for better understanding the pluvial floods, its 
prediction and promptness in reactions of urgent services. 

Therefore, the main aim of this report (study) is to develop a pluvial flood forecast model for the 
urban area in the Zadar pilot area. The forecast model is based on a 20-year of collected data from 

news reports and continuous high-resolution rain gauge data. In the following sections, we give a 

short overview of the operational weather forecasting and severe weather warning system in 

Croatia. Next, we describe the methodology for developing the forecast system based on rainfall 
threshold curves and machine-learning (ML) approaches. In the analysis we focus on a better 

understanding of pluvial floods in Zadar and develop models for an early warning system and pluvial 
flood forecast system. Finally, we present the model results and give recommendations on the best 
approaches. 

 
 
 

 

Aire Limitée Adaptation dynamique Développement InterNational (ALADIN) is a numerical 

(computational) model system for short-term high-resolution weather forecasting. Croatia has been 

a member of the ALADIN cooperation program since 1995, and the forecast of the Croatian version 

(ALADIN-HR) has been prepared by the Croatian Meteorological and Hydrological Service (DHMZ) 

since 2000. More about the ALADIN collaboration project can be found on the official ALADIN 

Consortium web page (http://www.umr-cnrm.fr/aladin/spip.php?article36). 

The main goal of the ALADIN cooperation project is to improve the forecast of severe weather 

conditions with an emphasis on the early warning system (EWS) of meteorological and hydrological 

disasters. Furthermore, timely delivery of prognostic products to end users is important, considering 

their specific needs (https://meteo.hr/). 

1.1 Background 

http://www.umr-cnrm.fr/aladin/spip.php?article36)
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At DHMZ, there are several operating configurations of ALADIN-HR models that differ primarily in 

the resolution of the model grid. All configurations are adapted to the weather and climate of 

Croatia. 

Some of the basic features of these operating configurations are (https://meteo.hr/): 

 horizontal resolution of 4 km and 2 km 

 hourly availability of prognostic products up to 72 hours in advance 

 new forecast every 6 hours 

All forecasts by the ALADIN-HR model are operatively made on the DHMZ supercomputer. In order 

to calculate the forecast for the next few days with a numerical model, it is necessary to know in 

advance the current state of the atmosphere, ie. the initial conditions determined by the data 

assimilation method. Numerous meteorological measurements and observations over Croatia and 

surrounding countries are used in the data assimilation process: ground measurements (at 2 m and 

10 m), aircraft measurements, measurements of polar and geostationary satellites and 

meteorological balloon measurements (radio sounding measurements). As the ALADIN-HR model 

has a limited space for forecasting, the calculation also requires meteorological conditions outside 

its domain (boundary conditions) obtained from the IFS global forecasting model of the European 

Center for Medium-Range Weather Forecasts (ECMWF). 

By increasing the resolution of the model, it is possible to predict the state of the atmosphere more 

accurately and in more detail. Figure 1.2.1 shows the areas (domains) for which the ALADIN-HR 

model forecast is calculated and the vertical section through the Velebit mountain for two model 

configurations at different horizontal resolutions. As can be seen from the figure, the finer 

resolution of the model provides a more accurate description of the orography and allows a much 

better forecast of orographic affected processes (eg. wind forecast). Similarly, higher model 

resolution better represents other physical processes in the model. 

ALADIN model products include (https://meteo.hr/): 

 prognostic maps of meteorological fields at the ground and at vertical levels to the top of 

the stratosphere 

 spatial and temporal vertical cross-sections of meteorological parameters 

 meteograms (time courses of meteorological parameters) 

 ASCII files, XML and tables of predicted sizes 

 GRIB files of forecast fields. 
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Figure 1.2.1. Areas (domains) for which the ALADIN-HR forecast is calculated and a vertical section through 

the Velebit mountain for two model configurations at different horizontal resolutions, 4 km and 2 km 

(https://meteo.hr/). 
 

DHMZ issues reports on future weather conditions (weather forecast) based on ALADIN-HR forecast 

products that are of public and state interest (https://meteo.hr/): 

 special warnings of dangerous weather conditions 

 general weather forecast 

 biometeorological forecast. 

Specialized forecasts of ALADIN-HR models are issued to users for the needs of (https://meteo.hr/): 

 ensuring the safety of air, sea, road, and rail transport 

 agricultural production and fisheries 

 open fire protection 

 planning of energy consumption and production of energy from renewable sources (wind, 

solar, hydropower) 

 optimization of business activities in the energy market 

 planning outdoor activities (construction works, cultural and sporting events, etc.). 
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The following ALADIN-HR products are publicly available on the DHMZ website 72 hours in advance 

with a 3-hour resolution: 

 ALADIN maps (example shown in Figure 1.2.2.) 

 ALADIN meteograms (example shown in Figure 1.2.3) 
 
 

 

Figure 1.2.2. Example of ALADIN forecast maps for precipitation (hrv. ukupna oborina) 



5 

 

 

1.3 Severe weather warning system in Croatia 

 
 
 

 
 

Figure 1.2.3. Example of ALADIN meteogram for Zadar, showing temperature (hrv. temperatura) and 

precipitation (hrv. oborina) for city of Zadar 

 

 

The Croatian Meteorological and Hydrological Service (DHMZ) provides Early Warning Systems for 

the natural hazards in Croatia for (www.meteo.hr): 

• Severe weather conditions (severe wind, heat wave warning, cold wave warning, intensive 

precipitations, phenomena like snow, black ice, poor visibility) 

• Severe flooding conditions (at river basins, for flash floods) 

• Drought prediction 

• Severe marine meteorological conditions (wind, sea state, thunderstorms and visibility) 4 times 
daily for the following 24 hours available for the public, plus 3-day outlook twice daily only for 

authorities and special users. 

The severe weather warning system is integrated with METEOALARM (https://meteoalarm.org/), 
which integrates all important severe weather information originating from the official National 
Public Weather Services across many European countries. This information is presented consistently 
to ensure coherent interpretation as widely as possible throughout Europe. 

METEOALARM is easily accessible to the public, simple and understandable to everyone. Using 
symbols and color-coded maps, it provides the most recent warnings of expected dangerous 

weather for the next 48 hours in much of Europe. Warnings are given for the following phenomena: 
heavy rain with the possibility of flooding, intense thunderstorms, stormy winds, heat waves, forest 
fires, fog, snow or extreme cold with blizzards, avalanches, and high coastal tides. 
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The colours on the coded map represent four levels of warning: red indicates the greatest danger 

of dangerous weather conditions, followed by orange and yellow, and green means that dangerous 
weather is not expected (www.meteo.hr). In Croatia, the sub-daily time scale (6 hours and 12 hours) 

is used to select an appropriate threshold value to define yellow, green, and red alarming categories 
for extreme rainfall events in the Meteoalarm rainfall warning system (Cindrić Kalin et al., 2021.). 

Furthermore, the country is divided into 8 land regions and 6 sea regions. An example of severe 
weather warnings in Croatia is illustrated in Figure 1.3.1. 

 

 

 

Figure 1.3.1. Example of severe weather warnings by the Croatian Meteorological and Hydrological Service 

(https://meteo.hr/naslovnica-upozorenja.php?lang=en&tab=upozorenja) 
 

Croatian Meteorological and Hydrological Service (DHMZ) disseminates forecasts to Main (National) 

Flood Protection Centre and other interested parties as well as to the public through multiple 

channels such as WEB, FTP, TV forecasts etc. The main (National) Flood Protection Centre compiles 

information received, with other relevant information such as daily and hourly recorded water 

levels, water flows, precipitation, temperatures, hydrological forecasts etc in a daily report which is 

delivered to parties and persons involved in operative flood defence in Croatia, and if needed to 

flood protection administrations of neighbouring countries and the public. 



7 

 

 

2.1 Study area 

 
 

2 Methodology 
 

 

The city of Zadar is situated on the eastern coast of the Adriatic Sea. The city covers 25 km2 with a 

population of 75,082 (2011 census), which makes it the second-largest city of the Dalmatia region 

and the fifth-largest city in Croatia. Zadar has a borderline humid subtropical (Cfa) and 

Mediterranean climate (Csa), with mild, wet winters and very warm, humid summers. 

Short high-intensity rainfall is the main cause of pluvial flooding in the Zadar pilot area. On 

September 11, 2017, extremely large amounts of rainfall caused pluvial and flash floods in Zadar 

with significant material damage. Between Sunday evening (10 Sept) and Monday evening (11 Sep) 

285 mm of rain was measured in Zadar, and around 325 mm at Zadar airport, Zemunik. Figure 2.1.1 

shows several news photographs from this extreme flood event. 

 

 

Figure 2.1.1. Photographs from the September 2017 flood in Zadar (zadarski.slobodnadalmacija.hr) 
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The land cover in the Zadar catchment is shown in Figure 2.1.2, based on Urban Atlas (Copernicus 

Land Monitoring Services). The main characteristic of the catchment is illustrated in Figure 2.1.3., 

which shows the digital elevation model, drainage network (SAGA channels), imperviousness 

density (Copernicus Land Monitoring Services) and population density (Worldpop, 2018). The city 

centre is located near the coast, with a high percentage of impervious area and dens population, 

making it prone to pluvial flood hazards, as well as exposed to pluvial flood risks. 

 
 

 

 
Figure 2.1.2. Zadar pilot area land cover (Urban Atlas, Copernicus) 
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Figure 2.1.3. Zadar pilot area catchment characteristics: a) Digital elevation model (DEM), c) Drainage 

network (SAGA channels), c) Imperviousness density (Copernicus), d) Population density (Worldpop). 
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Croatian Meteorological and Hydrological Service (DHMZ) reports about severe meteorological and 
hydrological events collected from news reports in Croatia on a monthly basis (Meteorološki i 

hidrološki bilten, DHMZ). These reports include flooding events, which are described by the date, 
location, description, and photographs (if available). All reports of pluvial flooding in Zadar from 
2000 to 2020 were extracted and processed for further analysis. A total of 105 flooding events were 
identified by this procedure. The descriptions of the reported flood events were translated in English 

and systemized using wordcloud module (Oesper et al., 2011.) in Python to identify the most 
common words appearing in the reports (see Figure 2.2.1.). 

 

 

Figure 2.2.1. Most common words from news reports of pluvial flooding in Zadar. 

2.2 Flooding reports 
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Rainfall at the Zadar pilot area is measured by the official rain gauge (pluviograph) at meteorological 

station Zadar, with a 5 min temporal resolution. For this study, we used a continuous time series of 

5-min rainfall depth from the period 2000-2020. The rainfall depths were aggregated to longer time 

scales (hourly, daily, and monthly) for a preliminary analysis. 

Figure 2.3.1 shows the monthly, daily, and hourly rainfall inter-annual statistics, as well as the 
number of flooding and non-flooding events in Zadar. The maximum and mean monthly rainfall 

during the year is shown in Figure 2.3.1a., which shows that the mean monthly rainfall usually occurs 
in the autumn months (Sep – Nov), whereas the maximum rainfall usually occurs in the summer and 
autumn months (Jul, Sep and Oct). 

Maximum 24-hour rainfall measured in the period 2000-2020 is shown in Figure 2.3.1b. These values 
are equally distributed throughout the year, except for a single extreme event (a huge mesoscale 
convective system), which occurred on 11 September 2017 and caused extensive pluvial and flash 
floods, widespread material damage and even jeopardised human lives 
(https://www.eumetsat.int/flash-floods-zadar-and-surrounding-areas). Maximum short-term 1- 
hour rainfall (Figure 2.3.1d.), on the other hand, usually occurs in the summer and autumn months 
(Jul, Sep and Oct), which correlates with maximum monthly rainfall. 

Finally, Figure 2.3.1c shows the inter-annual distribution of non-flooding and flooding events. This 
figure shows that the largest number of rainfall events occur in the autumn and winter months 
(from Sep to Feb), however, the largest number of flooding events occurs in the summer and 
autumn months (Aug, Sep, Oct, and Nov), which correlates with the maximum 1-hour rainfall. 

The rainfall data were pre-processed for further (flood forecast) analysis. First, the individual rainfall 

events were identified based on the condition of a 12-hour no-rain period between two events. 

Then significant rainfall events were selected from the set that had > 10 mm of rain in a 24-hour 

period. This procedure resulted in 565 significant individual rainfall events out of 1456 total rainfalls 

that occurred from 2000 to 2020. Figure 2.3.2. shows all and selected rainfalls given their duration 

and total depth (Figure 2.3.2c) with corresponding rainfall duration histograms (Figure 2.3.2a, b). 

Notice that rainfall durations range from 1 hr to 6 days, although most frequent events last from 6 

to 12 hours. One event that stands out with almost 300 mm of rainfall in less than 40 hours is the 

extreme flood from September 2017, mentioned previously. 

2.3 Rainfall data 

http://www.eumetsat.int/flash-floods-zadar-and-surrounding-areas)
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Figure 2.3.1. Inter-annual rainfall statistics in Zadar (2000-2020): a) mean and maximum monthly rainfall, b) 

maximum daily rainfall, c) number of flooding and non-flooding events, and d) maximum 1-hour rainfall. 
 

For each selected rainfall event, the maximum rainfall depth Hmax(t) at every considered duration t 

(temporal scale) was computed using the following expression: 
 

t/5 t/5+j 1440/5 

 max( ) = max {Σ  5( ), . . . ,  Σ  5( ), . . . , 
  

Σ  5( )} (1) 

k=1 k=1+j k=1+(1440–t)/5 

 

where j = 0, 1, ..., N, with N = (1400-t)/5 is the number of aggregated rainfall depths for each 

duration, H5 is 5-min rainfall depth, and t = 10, 30, 60, 120, 180, 240, 360, 540, 720 and 1440 min 

are all rainfall durations considered in this analysis. Note that each item in the bracket of Eq. (1) 

represents a t-min rainfall depth accumulated from k 5-min rainfall depths, and Ht is then the 

maximum value of all accumulated rainfalls for a selected duration. 
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Figure 2.3.2. Individual rainfall events in Zadar (2000-2020): a) duration histogram for all rainfall events, b) 

duration histogram for significant (selected) rainfall events, and c) total rainfall depth vs duration for all and 

selected rainfall events. 

 
 

Figure 2.3.3 shows depth-duration curves for all selected rainfall events classified as either flooding 

or non-flooding events based on collected and processed news reports. The main challenge with 

classifying these events based on rainfall depths is the high percentage of overlap for all considered 

durations. This is additionally illustrated in Figure 2.3.4 by histograms of rainfall depths for a 

representative short duration (1 hour) and a long duration (24 hours). This figure suggests that both 

flooding and non-flooding events can occur when the 1-hour rainfall is in the range of 0-30 mm, and 

24-hour rainfall depth is in the range of 20-50 mm, which makes it difficult to directly select an 

appropriate rainfall depth threshold. Therefore, a more careful analysis is required. 
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Figure 2.3.3. Depth duration curves for all considered rainfall events classified as flooding and non-flooding 

events based on news reports. 

 

 

Figure 2.3.4. Histogram of flooding and non-flooding rainfall depths for 1-hour and 24-hour durations 
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A conventional and simple approach for flood forecast is a rainfall threshold (Martina et al., 2006; 
Yang et al., 2016; Tian et al., 2019; Ke et al., 2020). Specifically, a rainfall threshold is defined by a 

single rainfall depth (so-called critical rainfall threshold) or several rainfall depths over different time 
scales or durations (so-called rainfall threshold curve), above which a flood is likely to occur (Ke et 
al., 2020). Rainfall threshold approach is widely used to predict landslides (Giannecchini et al., 2012; 
Hong et al., 2018), debris flows (Pan et al., 2018) and flash floods (Zhai et al., 2018). The threshold- 

based approach for flood alerts is based on defining a threshold curve, observing accumulated 
rainfall and/or rainfall forecast, and issuing a flood alert if the observed/forecasted rainfall exceeds 

the threshold curve (Figure 2.4.1.). 
 
 

 

Figure 2.4.1. Threshold-based approach for flood alerts (Young et al., 2021.) 
 

In this study, we follow the approach proposed by Ke et al. (2020) for predicting pluvial flooding 

with some minor modifications. The threshold curve is defined by maximum (accumulated) rainfall 

depths for each rainfall duration. Note that these are not cumulative rainfall curves, but maximum 

depths per each duration (similar to traditional depth-duration-frequency curves). Furthermore, we 

assume that when the observed maximum rainfall of any considered duration exceeds the 

threshold, flooding is expected to occur. The flow chart with the main steps for estimating the 

rainfall threshold curve is shown in Figure 2.4.2. Specifically, in the present analysis, parameters α 

and β ranged from 0.0 – 0.5 and 0.5 – 1.0, respectively, whereas γ ranged from 0.0 – 1.0. 

2.4 Rainfall threshold approach 
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2.5 Machine learning (ML) approach 

 
 
 

 
 

Figure 2.4.2. Flow chart for estimating a rainfall threshold curve for pluvial flooding (modified from Ke et 

al., 2020.) 

 
 

 

 

Machine learning (ML) methods, in particular supervised learning methods, are data-driven 
algorithms that are trained on a subset of available data and then tested on a different subset of 
data to validate their performance for future inputs. In general, supervised ML are used for 

classification (identifying which category an object belongs to) or regression problems (predicting a 

continuous-value attribute associated with an object). The task of flood forecasting is a typical 
classification problem – identifying if individual rainfall (or a wider set of hydrological variables) 

belongs to a “flooding” or “non-flooding” category. Given the size of data (rainfall events) and binary 

outcome, we chose and tested the performance of 10 classification ML algorithms from five major 
ML categories: a) linear models, b) support vector machines (SVM), c) discriminant analysis, d) 
decision trees, and e) nearest neighbours (NN) (see Table 2.5.1). All ML algorithms were 

implemented in Python 3.7 using scikit-learn (Pedragosa et al., 2011.). 
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2.6 Feature selection 

 

 
Table 2.5.1. Machine learning methods applied in this study for predicting pluvial flooding. 

 

Nr. Category Model Parameters 

0 Linear models Logistic regression No penalty 

1 Support Vector Machines Support Vector Classification Linear kernel 

2  Support Vector Classification Quadratic kernel 

3  Support Vector Classification Cubic kernel 

4 Discriminant analysis Linear Discriminant Analysis SVD solver 

5  Quadratic Discriminant Analysis - 

6 Decission trees Decission Tree Classifier 8 leaf nodes 

7  Decission Tree Classifier 18 leaf nodes 

8 Nearest neighbours k-neighbours classification 
3 neighbours

 
Euclidian distance weight 

9 
 k-neighbours classification 

15 neighbours
 

Euclidian distance weight 

 

 

 

In this study we consider two levels of model operation (purpose) – the first is an early warning 
system (EWC) for pluvial flooding based on real-time rainfall observations, and the second one is a 

flood forecasting system based on weather forecasts. Furthermore, for the rainfall threshold curve, 
only the rainfall depths are considered, whereas for the ML approach we also include air 

temperature and antecedent rainfall conditions. Since forecasts in Croatia from the ALADIN model 
are publicly available only in 3h times steps, for forecast models we consider only the 3, 6, 12 and 24-

hour rainfalls. Overall, all considered meteorological parameters for each purpose and approach are 
listed in Table 2.6.1. 

For all considered approaches, the dataset was split to training and testing subsets with the ratio 
70:30, resulting in 395 events for training and 170 events for testing. 

 

Table 2.6.1. Considered model features for each purpose (EWC or forecast) and each approach (threshold 

curve and ML) 

EWC Forecast 

 
Variable Description 

Threshold 

curve ML 

Threshold 

curve ML 

 

A5d Antecedent 5-day rainfall (mm) 

A15d Antecedent 15-day rainfall (mm) 

A30d Antecedent 30-day rainfall (mm) 
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2.7 Model performance 

 
 
 

H10min   Maximum 10-min rainfall (mm) 

H30min   Maximum 30-min rainfall (mm) 

H1h Maximum 1-hour rainfall (mm) 

H2h Maximum 2-hour rainfall (mm) 

H3h Maximum 3-hour rainfall (mm) 

H4h Maximum 4-hour rainfall (mm) 

H6h Maximum 6-hour rainfall (mm) 

H9h Maximum 9-hour rainfall (mm) 

H12h  Maximum 12-hour rainfall (mm) 

H24h  Maximum 24-hour rainfall (mm) 

  Temp Mean daily air temperature (°C)  

N=10 N=14 N=4 N=4 
 

 

 

The performance of all considered models under both approaches were evaluated by several 
indicators. Since this is a binary classification problem, only four possible outcomes are expected: 

 true positive (TP) – a flooding event was correctly identified by the model (hit) 

 true negative (TN) – a non-flooding event was correctly identified by the model (no event) 

 false positive (FP) – a non-flooding event was misidentified as a flooding event by the 
model (false alarm) 

 false negative (FN) – a flooding event was misidentified as a non-flooding event by the 

model (miss) 

Based on the number of these four outcomes several indicators are computed, namely: 

 True positive rate (recall) TPR = TP / (TP + FN) 

 True negative rate TNR = TN / (TN + FP) 

 Positive predictive rate (precision) PPR = TP / (TP + FP) 

 Negative predictive rate NPR = TN / (TN + FN) 

 Accuracy ACC = (TN + TP) / (TN + TP + FN + FP) 

 F1 score F1 = 2 * (TPR * PPR) / (TPR + PPR) 

In addition to these traditional scoring indicators, we also considered a product of TPR and ACC as 
a combined measure of accuracy and recall (TPR_ACC). 
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3.1 Threshold-based EWS 

 
 

3 Early warning system for pluvial flooding 
 

 

Using the training set that consists of 319 non-flooding events and 76 flooding events we performed 
a thorough search for all possible combinations of parameters α, β and γ. From the pool of several 

thousand combinations, we selected the three best threshold curves, which have the highest value 

of at least one of the considered metrics. Derived rainfall thresholds for each considered duration 
(model feature) are shown in Table 3.1.1. These threshold curves were then applied to the testing 
set that consists of 141 non-flooding and 29 flooding events. The confusion matrix for each of the 

three threshold curves is shown in Figure 3.1.1. and performance indicators are given in Table 3.1.2. 
Finally, the comparison of testing depth-duration curves (flooding and non-flooding) against three 

derived threshold curves is illustrated in Figure 3.1.2. 

All three curves have an accuracy between 0.88 and 0.93 (Table 3.1.2). Curve nr. 0 has the highest 
overall accuracy, but fewer true positive predictions and a high number of false negative predictions 
(missed flood events), whereas curve nr. 2 has the highest true positive rate and most true positive 
predictions, but also a larger number of false positive predictions (false alarms). Curve nr.1 is in 
between the other two curves with the highest F1 score and balanced false positive and false 
negative predictions. 

 

 
Table 3.1.1. Best-performing rainfall thresholds curves in (mm) based on 10 features. 

  Curve   H10min H30min H1h H2h H3h H4h H6h H9h H12h H24h   
 

0 11.5 26.2 28.8 31.1 33.3 35.8 42.3 44.7 44.7 44.7 

1 9.9 22.7 25.2 27.4 29.7 32.0 37.9 40.2 40.4 41.1 

2 6.8 15.7 18.0 20.1 22.5 24.4 29.0 31.3 31.7 33.8 

 

 
Table 3.1.2. Best-performing rainfall threshold curve parameters and their performance indicators based on 

10 features. 

Curve α β γ TPR TNR PPR NPR ACC F1 TPR_ACC 

0 0.0 1.0 0 

1 0.02 1.0 0.15 

2 0.02 1.0 0.45 

0.62 

0.72 

0.99 0.95 0.93 

0.94 

0.93 0.75 0.58 

0.97 0.84 

0.87 0.60 

0.93 0.78 0.67 

0.93 0.98 0.88 0.73 0.82 
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Figure 3.1.1. Confusion matrices for three best performing rainfall threshold curves based on 10 features. 
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3.2 Machine-learning EWS 

 
 
 

 

Figure 3.1.2. Flooding and non-flooding depth-duration curves with three best-performing rainfall threshold 

curves Best-performing rainfall thresholds curves based on 10 features. 

 

 

Machine learning (ML) models were trained and tested using the same dataset as for the threshold 
model. However, in addition to 10 rainfall features, we also included the daily temperature and 
three antecedent rainfall conditions. First, we performed a univariate statistical test to select only 
the best features. Scores of ANOVA F-value test are shown in Figure 3.2.1, which suggests that 
antecedent rainfall data has almost no impact on flooding, whereas temperature has a much lower 
effect than the rainfall depths of all durations. Therefore, we dropped the three antecedent 
condition features and kept the rest (11 features). 
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Figure 3.2.1. F-value test scores for all 14 considered features. 
 

After the training step, we evaluated the performance of all 10 ML models using the testing dataset. 
The confusion matrices from all models are shown in Figures 3.2.2.-3.2.4. and performance 
indicators are given in Table 3.2.1. The performance of all models based on a combination of ACC 
and TPR metrics are presented in Figure 3.2.5. 

All ML models have an accuracy between 0.89 and 0.95, however, TPR and F1 have a wider range 
of values. The three best performing ML models are the discriminant analysis (linear and quadratic) 

and logistic regression (0, 4, and 5). The best model is the quadratic discriminant analysis with an 

accuracy of 0.95 and F1 score of 0.89. This model had 24 hits (TP), 5 misses (FN) and only 4 false 
alarms (FP), implying that 83% of flooding events can be accurately predicted using this model. 

 

 
Table 3.2.1. Performance indicators for ten ML methods based on 11 features 

 

Method TPR PPR ACC F1 TPR_ACC 

0 Logistic regression 0.72 0.99 0.95 0.84 0.69 

1 Suport vector machine (linear) 0.62 0.99 0.93 0.76 0.58 

2 Suport vector machine (quadratic) 0.48 0.99 0.91 0.65 0.44 

3 Suport vector machine (cubic) 0.59 0.99 0.92 0.74 0.54 

4 Discriminant analysis (linear) 0.66 0.99 0.94 0.79 0.61 

5 Discriminant analysis (quadratic)  0.83      0.97      0.95 0.89 0.78  

6 Decission trees, N=8 0.55 0.96 0.89 0.70 0.49 

7 Decission trees, N=18 0.69 0.95 0.91 0.80 0.62 

8 KNN, Euc. distance, n=3 0.62 0.95 0.89 0.75 0.55 

9 KNN, Euc. distance, n=15 0.62 0.99 0.92 0.76 0.57 
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Figure 3.2.2. Confusion matrices for logistic regression, and three support vector machine algorithms based 

on 11 features. 
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Figure 3.2.3. Confusion matrices for two discriminant analysis and two decision tree algorithms based on 11 

features. 
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Figure 3.2.4. Confusion matrices for two nearest neighbour algorithms based on 11 features. 
 
 
 

 

Figure 3.2.5. Model performance of all 10 ML algorithms based on accuracy (ACC) and true predictive rate 

(TPR) based on 11 features, red colour depicts best performing ML methods. 
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4.1 Threshold-based pluvial flood forecast 

 
 

4 Pluvial flood forecast model 
 
 

 

Using the same training set as for the EWS model, but with only four features (3-, 6-, 12-, and 24- 
hour rainfall) we again performed a thorough search for all possible combinations of parameters α, 
β and γ. From the pool of several thousand combinations, we selected the three best threshold 
curves, which have the highest value of at least one of the considered metrics. Derived rainfall 
thresholds for each considered duration (model feature) are shown in Table 4.1.1. These threshold 
curves were then applied to the testing set and the confusion matrix for each of the three threshold 
curves is shown in Figure 4.1.1. with the performance indicators presented in Table 4.1.2. Finally, 
the comparison of testing depth-duration curves (flooding and non-flooding) against three derived 
threshold curves is illustrated in Figure 4.1.2. 

All three curves have an accuracy between 0.84 and 0.93. Similar to the EWS model with 10 features, 

curve nr. 0 has the highest overall accuracy, but fewer true positive predictions and a high number 
of the false negative predictions (missed flood events), whereas curve nr. 2 has the highest true 
positive rate and most true positive predictions, but also a larger number of false positive 

predictions (false alarms). Curve nr.1 is in between the other two curves with the highest F1 score 

and balanced false positive and false negative predictions. Overall, these rainfall thresholds derived 
for only four features have very similar performance metrics as the EWS model, which is more 
complex to use in practical application. 

 

Table 4.1.1 Best-performing rainfall thresholds curves in (mm) based on 4 features. 

    Curve H3h H6h H12h H24h  
 

0 33.3 42.3 44.7 44.7 

1 28.5 34.7 38.7 39.2 

  2 18.8 25.3 29.4 31.4  
 

Table 4.1.2. Best-performing rainfall threshold curve parameters and their performance indicators based on 

4 features. 

Curve α β γ TPR TNR PPR NPR ACC F1 TPR_ACC 

0 0.0 1.0 0.0 0.59 0.99 0.94 0.92 0.92 0.72 0.54 

1 0.18 1.0 0.35 0.76 0.96 0.81 0.95 0.93 0.79 0.71 

2 0.1 1.0 0.7 0.93 0.82 0.51 0.98 0.84 0.66 0.78 
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Figure 4.1.1. Confusion matrices for three best performing rainfall threshold curves based on 4 features. 
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4.2 ML-based pluvial flood forecast 

 
 
 

 

Figure 4.1.2. Flooding and non-flooding depth-duration curves with three best-performing rainfall threshold 

curves Best-performing rainfall thresholds curves based on 4 features. 

 
 

 

 

Machine learning (ML) models were trained and tested using the same dataset as for the threshold 
model. However, in contrast to the EWS model based on 11 features the forecast model uses only 
four features that are publicly available through official weather forecast (ALADIN). 
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After the training step, we evaluated the performance of all 10 ML models using the testing dataset. 

The confusion matrices from all models are shown in Figures 4.2.1.-4.2.3. and performance 
indicators are given in Table 4.2.1. The performance of all models based on a combination of ACC 

and TPR metrics are presented in Figure 4.2.4. 

All ML models have an accuracy between 0.87 and 0.94, which is very close to the EWS model with 
11 features. The three best performing ML models are the discriminant analysis (quadratic), logistic 
regression and k-nearest neighbours (0, 5, and 8). The best model is again the quadratic discriminant 
analysis with an accuracy of 0.94 and a f1 score of 0.89. This model had 24 hits (TP), 5 misses (FN) 
and only 5 false alarms (FP), implying that 83% of flooding events can be accurately predicted using 
this model. This is an almost identical performance as with 11 features. 

 

 
Table 4.2.1. Performance indicators for ten ML methods based on 4 features. 

 

Method FN FP TN TP TPR PPR ACC F1 TPR_ACC 

0 Logistic regression 9 2 139 20 0.69 0.99 0.94 0.81 0.65 

1 Suport vector machine (linear) 14 1 140 15 0.52 0.99 0.91 0.68 0.47 

2 Suport vector machine (quadratic) 16 0 141 13 0.45 1.00 0.91 0.62 0.41 

3 Suport vector machine (cubic) 13 1 140 16 0.55 0.99 0.92 0.71 0.51 

4 Discriminant analysis (linear) 11 2 139 18 0.62 0.99 0.92 0.76 0.57 

5 Discriminant analysis (quadratic) 5 5 136 24    0.83  0.96    0.94 0.89 0.78  

6 Decission trees, N=8 16 6 135 13 0.45 0.96 0.87 0.61 0.39 

7 Decission trees, N=18 9 12 129 20 0.69 0.91 0.88 0.79 0.60 

8 KNN, Euc. distance, n=3 9 4 137 20 0.69 0.97 0.92 0.81 0.64 

9 KNN, Euc. distance, n=15 12 2 139 17 0.59 0.99 0.92 0.74 0.54 
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Figure 4.2.1. Confusion matrices for logistic regression, and three support vector machine algorithms based 

on 4 features. 
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Figure 4.2.2. Confusion matrices for two discriminant analysis and two decision tree algorithms based on 4 

features. 
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Figure 4.2.3. Confusion matrices for two nearest neighbour algorithms based on 4 features. 
 
 
 

 

Figure 4.2.4. Model performance of all 10 ML algorithms based on accuracy (ACC) and true predictive rate 

(TPR) based on 4 features., red colour depicts best performing ML methods. 
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5 Conclusion 
 

This study has presented the development of a pluvial flood forecast model for the Zadar pilot area. 

The model is based on 20-years of collected data, consisting of individual news reports on pluvial 

flooding and continuous 5-min rain gauge data. Two different computational approaches have been 

considered. The first – conventional one – is based on rainfall threshold curves that define critical 

rainfall for different durations above which flooding is likely to occur. The second approach is based 

on machine learning and a classification problem – predicting whether accumulated rainfall depths 

over different durations will generate pluvial flooding. For the second approach, we have considered 

10 different methods belonging to five machine learning categories, which are usually applied for 

classification problems. Namely, these are logistic regression, support vector machine, discriminant 

analysis, decision trees, and nearest neighbours. 

Furthermore, we have considered two different applications for these predictive models - an early 

warning system that uses real-time high-resolution rainfall data and a flood forecasting model which 

uses official weather forecasts from the ALADIN model (publicly available from the Croatian 

Meteorological and Hydrological Service, DHMZ). For the first purpose, we have trained all models 

using 10 and 11 features (accumulated rainfall depths over different durations and daily 

temperature), whereas for the second purpose we have considered only four rainfall depths for 

durations in 3-hour steps to make them compatible with the ALADIN weather forecast. 

After careful analysis, we have defined rainfall threshold curves for the Zadar pilot area which can 

be used for both an early warning system and flood forecasting system with high accuracy. Some 

machine learning models can provide slightly more accurate predictions, with the quadratic 

discriminant analysis being the most successful method for this purpose. 

Overall, this study showed that the flood predictions based on news reports can be a reliable 

approach in the Zadar pilot area. The analysis performed in this study has laid the foundation for 

the implementation of an early warning system and flood forecast system in Zadar and other pilot 

areas in Croatia. 
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