

# **AdriaClim**

Climate change information, monitoring and management tools for adaptation strategies in Adriatic coastal areas

Project ID: 10252001

# D 3.2.2 Sets of simulation outputs together with metadata suitable for information retrieval

# PP9 – CMCC

Final version

Public document

www.programming14-20.italy-croatia.eu/web/adriaclim



| Project Acronym:                        | AdriaClim                                                                                                          |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Project ID Number:                      | 10252001                                                                                                           |
| Prject Title:<br>adaptation stra        | Climate change information, monitoring and management tools for ategies in Adriatic coastal areas                  |
| Priority Axis:                          | 2 - Climate change adaptation                                                                                      |
| Specific objective:<br>measures tacklin | 2.1 - Improve the climate change monitoring and planning of adaptation g specific effects, in the cooperation area |
| Work Package Number                     | : 3                                                                                                                |
| Work Package Title:                     | Climate change monitoring (observing and modelling) systems                                                        |
| Activity Number:                        | 3.2                                                                                                                |
| Activity Title:                         | Design and implementation of the integrated modelling systems                                                      |
| Partner in Charge:                      | CMCC                                                                                                               |
| Partners involved:                      | UNIBO                                                                                                              |
| Status:                                 | Final                                                                                                              |
| Distribution:                           | Public                                                                                                             |
| Date:                                   | 06/09/2022                                                                                                         |



| Deliverable     | D3.2.2 [Sets of simulation outputs together with metadata suitable for information retrieval]                                                                                                                   |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Due Month       | M27                                                                                                                                                                                                             |
| Delivery Date   | M29                                                                                                                                                                                                             |
| Document Status | v1                                                                                                                                                                                                              |
| Authors         | Giorgia Verri, Rita Lecci, Alessandro De Donno, Emanuela<br>Clementi (CMCC Foundation), Alfonso Senatore, Luca Furnari<br>(University of Calabria), Lorenzo Mentaschi, Nadia Pinardi<br>(University of Bologna) |
| Reviewers       |                                                                                                                                                                                                                 |



# Table of contents

## Table of Contents

| Table of conter       | nts         |              |                  |   |              | 4  |
|-----------------------|-------------|--------------|------------------|---|--------------|----|
| Aims and conte        | ent of the  | document     |                  |   |              | 5  |
|                       |             |              | regional         |   | sub-regional |    |
| The atmospher<br>6    | re climate  | dataset      |                  |   |              |    |
| The hydrology<br>8    | climate d   | ataset       |                  |   |              |    |
| The marine the<br>13  | ermo-hydi   | rodynamics   | s climate datase | t |              |    |
| Toward the ma<br>15   | irine biocl | hemistry cli | mate dataset     |   |              |    |
| Toward the mari<br>16 | ne wave o   | climate data | ase              |   |              |    |
| Appendix              |             |              |                  |   |              | 17 |



## Aims and content of the document

The data stock produced within the AdriaClim Project will be conveyed to a web- infrastructure, based on ERDDAP server, which is expected to provide a holistic geodatabase for the project target areas, i.e. the Adriatic Sea and the marine pilotsites.

To this purpose, the AdriaClim ERDDAP server is expected to host:

- the observing data gathered by the project monitoring campaigns,
- the atmosphere, land and ocean reanalyses datasets used as benchmark for

comparing the new modeling results and for preliminary evaluation of climate variability and CC indicators in the present state

iii) a MedCordex AORCM dataset used as the coarse forcing to perform theAdriaClim climate downscaling,

iv) the modelled data produced by the AdriaClim sub-regional and coastal climatedownscaling,

v) the basin-to-local scale climate change indicators processed on the basis of the AdriaClim modeling results

The purpose of the present deliverable is to offer guidelines to ensure that the AdriaClim modeling results, collected under the umbrella of Work Package3- Activity 3.2 and shared on the AdriaClim ERDDAP, are easily accessible and interoperable by the whole AdriaClim partnership.

To retrieve any information on data access please refer to Deliverable 4.3.1

i) ii)



# The dataset of the regional to sub-regional climate downscaling

#### The atmosphere climate dataset

<u>Two 31-year climate simulations have been performed with</u> the atmospheric component of the AdriaClim sub-regional earth system. It is based on WRF code which includes a land surface sub-model NOAH. We named the WRF climate simulations as historical and projection simulations: the former is over the time window 1990-2020, and the latter spans the 2020-2050 range. The first year of both climate simulations is considered as spin-up period. It has been used also to train the quantile mapping method adopted to bias correct the near surface atmospheric fields (details are in the companion Deliverable 3.2.2), thus year 1990 and year 2020 have been removed from the WRF data reposito



#### The AdriaClim atmosphere-land climate dataset is detailed in Table1

| File name                                                                    | wrfout_d01_\${year}-\${month}-<br>\${day}_12:00:00c_corr                                                                                                          |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fields                                                                       | 3D atm field, 2D near surface atm fields, 2D<br>land surface<br>fields, 4 soil layer fields                                                                       |
| File format                                                                  | Compr<br>essed<br>NETC<br>DF4,<br>CF-1.6<br>conven<br>tion                                                                                                        |
| Time window<br>and Time<br>frequency                                         | 1991 to 2020; 2021 to 2050<br>Daily files with 4 timesteps; 6h frequency<br>instantaneousfields from the current day<br>at 12:00 UTC to the day afterat 06:00 UTC |
| Computatio<br>nal grid                                                       | Arakawa C-type grid<br>289X403 grid points,<br>[5 to 23 degE - 29.8 to 48.8 degN]                                                                                 |
| Horizonta<br>I<br>coordinat<br>es and<br>resolution                          | Mercator plain coordinates, ~6km                                                                                                                                  |
| Vertica<br>I<br>coordi<br>nates<br>and<br>resoluti<br>on                     | 60 unevenly spaced following terrain ETA-<br>levels (up to<br>~100 hPa)                                                                                           |
| Vertical<br>discretiz<br>ation of<br>the land<br>surface<br>submodel<br>NOAH | 4 soil layers (DZS variable): [0-0.1]m;<br>[0.1-0.4]m; [0.4,1]m; [1, 2]m                                                                                          |



| Post<br>Processed<br>fields | <ul> <li>Bias-corrected fields (quantile mapping and linearscaling):</li> <li>6h 2meter air temperature T2,</li> <li>6h 10meter zonal velocity component U10</li> <li>6h 10meter meridional velocity component V10</li> <li>6h cumulated total rainfall (convective + orographic components) RAINTOT</li> </ul> |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

Table1: AdriaClim WRF dataset

#### The hydrology climate dataset

Two 30-year climate simulations have been performed with the hydrology component of the AdriaClim sub-regional earth system. It is based on WRFHydro code.

We named the WRFHydro climate simulations as historical and projection simulations: the former is over the time window 1991-2020 with start on September 1<sup>st</sup> 1991 following the definition of hydrological year and by considering 1990 as spin-up year of WRF historical simulation and training year for the bias correction method. The latter spans the 2021-2050 rang with start on September 1st 2021 (year 2020 is the spin-up year of WRF projection simulation and the training year for the bias correction method).

September-December 1991 and September-December 2021 are considered as spin-up months of WRFHYDRO climate simulations thus they have been removed from the WRFHydro data repository.

The AdriaClim hydrology climate dataset is detailed in Table2. It has to be considered as a first version of the WRFHydro data repository because some small and medium rivers ending on the western Adriatic coastline have been found to underestimate the observed runoff on the historical range and a further calibration is underway. Thus a second version of the WRFHydro climate simulations will be released by May.

The list of the catchments solved by the WRFHydro system and the subset which has been selected to represent the freshwater release into the AdriaClim ocean component NEMO are provided and commented on in the Appendix.

The AdriaClim WRF-WRFHydro system includes a double shallow water system (2D overland waterflow and 1D channel streamflow) with 600m resolution and is able to represent 145 catchments ending into Adriatic Sea,

i.e. the ones with a basin area major than 70 km2. They are shown in Figure A1. For each river, a monitoring point has been fixed along the river network on the computation grid as close as possible to the river mouth. WRFHydro is not able to



spatially discretize the Po river delta system thus the river discharge at Pontelagoscuro monitoring point is considered for coupling with the ocean model component and splitted among the nine branches of the delta: Po di Goro, Po di Gnocca, Po di Tolle, Po di Bastimento, Po di Scirocco, Po di Bonifazi, Po di Dritta, Po di Tramontana, Po di Maistra (light blue markers in Figure A2). Percentages provided by Provini et al. (1992) are used for the partitioning.



| File name       runoff_hist_\${river_code}_\${year}.txt         File name       runoff_proj_\${river_code}_\${year}.txt         Note: "river_code" is the numeric code         used byWRFHydro |                                                                                                                                                                                                                              |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Fields                                                                                                                                                                                         | column 1: Date<br>column 2: river_code<br>column 3: longitude<br>(degree east)column 4:<br>latitude (degree north)<br>column 5: streamflow<br>(m^3/sec) column 6:<br>streamflow (feet^3/sec)<br>column 7: water level<br>(m) |  |
| File format                                                                                                                                                                                    | ASCII; Unidata Observation Dataset v1.0                                                                                                                                                                                      |  |
| Time window<br>and Time<br>frequency                                                                                                                                                           | 1992 to 2020; 2022 to 2050<br>Annual files with 1h frequency                                                                                                                                                                 |  |

| File name                         | \${year}\${month}\${day}0000.CHANOBS_DOMAI<br>N1             |
|-----------------------------------|--------------------------------------------------------------|
| Fields                            | WRFHydro river streamflow for each of the 145 modeled rivers |
| File format                       | Compressed NETCDF4,<br>Unidata Observation Dataset v1.0      |
| Time window and<br>Time frequency | 1992 to 2020; 2022 to 2050<br>Daily files with 1h frequency  |

| File name   | \${year}\${month}\${day}0000.CHRTOUT_D<br>OMAIN1                                                                    |  |
|-------------|---------------------------------------------------------------------------------------------------------------------|--|
| Fields      | WRFHydro river streamflow for each of the<br>145 modeled rivers at all the pixes<br>representing the river networks |  |
| File format | Compressed NETCDF4,                                                                                                 |  |
|             | Unidata Observation Dataset v1.0                                                                                    |  |



| Time window and Time | 1992 to 2020; 2022 to 2050    |
|----------------------|-------------------------------|
| frequency            | Daily files with 1h frequency |



| File name                         | \${year}\${month}\${day}0000.LDASOUT_DOMAI<br>N1                                                                                                       |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fields                            | WRFHydro Land Surface sub-model soil laver fields                                                                                                      |
| File format                       | Compressed<br>NETCDF4,<br>CF-1.6<br>convention                                                                                                         |
| Time window and<br>Time frequency | 1992 to 2020; 2022 to 2050<br>Daily files with with 24 timesteps: 1h frequency<br>instantaneous fields on the current day fro<br>00:00 UTCto 23:00 UTC |

| Computational grid      | Arakawa E-type grid                                        |
|-------------------------|------------------------------------------------------------|
| Horizontal coordinates: | Mercator plain coordinates                                 |
| Horizontal resolution:  | ~600 m (1:10 with respect to WRF)                          |
| Vertical coordinates:   | -                                                          |
| Vertical resolution:    | 4 soil layers: [0-0.1]m; [0.1-0.4]m; [0.4, 1]m; [1,<br>2]m |
| Post Processed fields:  | -                                                          |

Table2: AdriaClim WRFHydro dataset



#### The marine thermo-hydrodynamics climate dataset

Two 29-year climate simulations have been performed with the ocean component of the AdriaClim sub-regional earth system. It is based on NEMO code.

We named the NEMO climate simulations as historical and projection simulations. They cover the time window 1992-2020 and 2022-2050respectively, both chosen by considering the spin-up periods of WRF and WRFHydro climate simulations.

January 1992 and January 2022 are considered as spin-up months of NEMO climate simulations thus they have been removed from the NEMO data repository.

The AdriaClim ocean climate dataset is detailed in Table3. It has to be considered as a first version of the NEMO data repository. The final version of the NEMO climate simulations will be collected by June in order to embed the river runoff simulated by the new release of WRFHydro climate experiments. Moreover the final NEMO climate simulations print out the 2D sea surface fields and air-sea fluxes with 3h frequency while maintaining daily frequency for the 3D fields.

| File name                         | ADRIACLIM2_1d_\${year}\${month}\${d<br>ay}_grid_T.nc<br>ADRIACLIM2_1d_\${year}\${month}\${d<br>ay}_grid_U.nc<br>ADRIACLIM2_1d_\${year}\${month}\${d<br>ay}_grid_V.nc<br>ADRIACLIM2_1d_\${year}\${month}\${d<br>ay}_grid_W.nc |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fields                            | 3D ocean field, 2D sea surface ocean fields, 2D air-sea fluxes                                                                                                                                                               |
| File<br>format                    | Compressed NETCDF4,<br>CF-1.6 convention                                                                                                                                                                                     |
| Time window and<br>Time frequency | 1992 to 2020; 2022 to 2050 daily files with 1 timestep representing daily average fields                                                                                                                                     |
| Computationalgrid                 | Arakawa C-type grid<br><i>432X331 grid points,</i><br>[12 to 20.98 degE; 39.0 to 45.88 degN]                                                                                                                                 |



| Horizontal<br>coordinates<br>resolution: | and | regular spherical coordinates, ~2km                                                                     |
|------------------------------------------|-----|---------------------------------------------------------------------------------------------------------|
| Vertical<br>Coordinates<br>resolution    | and | 120 unevenly spaced z-geopotential levels with partial steps atthe bottom (0.4 m to 2629.3 m on T-grid) |

| File name | ADRIACLIM2_3h_\${year}\${month}\${day}_grid_T.nc<br>ADRIACLIM2_3h_\${year}\${month}\${day}_grid_U.nc |
|-----------|------------------------------------------------------------------------------------------------------|
|           | ADRIACLIM2_3h_\${year}\${month}\${day}_grid_V.nc                                                     |



| Fields                                      | 2D sea surface ocean fields, 2D air-sea fluxes                                               |
|---------------------------------------------|----------------------------------------------------------------------------------------------|
| File format                                 | Compressed<br>NETCDF4,<br>CF-1.6<br>convention                                               |
| Time<br>window and<br>Time<br>frequency     | 1992 to 2020; 2022 to 2050<br>daily files with 8 timesteps representing 3h fields            |
| Computationa<br>Igrid                       | Arakawa C-type grid<br><i>432X331 grid points,</i><br>[12 to 20.98 degE; 39.0 to 45.88 degN] |
| Horizontal<br>coordinates<br>andresolution: | regular spherical coordinates, ~2km                                                          |

Table3: AdriaClim NEMO dataset.

### Toward the marine biochemistry climate dataset

| File name                            | BFM_1d_\${year}\${month}\${day}_\${year}\${month}\${day+10}_grid<br>_bfm.nc                                                                                                                                                 |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fields                               | <ul> <li>3D mean biogeochemical variables:</li> <li>concentration of chlorophyll-a</li> <li>concentration of phosphate PO4</li> <li>concentration of nitrate NO3</li> <li>concentration of oxygen O2</li> <li>ph</li> </ul> |
| File format                          | NETCDF4                                                                                                                                                                                                                     |
| Time window<br>and Time<br>frequency | 10-day files with 5-day mean variables                                                                                                                                                                                      |
| Computational grid                   | 432X331X120 grid points ( corresponding to NEMO T 3D<br>grid)<br>[12 to 20.98 degE; 39.0 to 45.88 degN]                                                                                                                     |



coordinates and resolution:

regular spherical coordinates, ~2km

Toward the marine wave climate datase



Wave simulations are based on WW3 v6.07 code. Final wave simulations will be performed using the atmospheric wind (WRF) and ocean currents and temperature (NEMO) fields of the AdriaClim system. Until now, sensitivity experiments have been performed with ECMWF winds and no current forcing for 1 year (2019).

The AdriaClim wave dataset will have the format described in Table 4.

| File name                                   | ww3.\${year}\${month}\${day}.nc                                                                                      |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Fields                                      | 2D instantaneous wave parameters: significant wave<br>height,period and direction                                    |
| File format                                 | NETCDF4                                                                                                              |
| Time window<br>and Time<br>frequency        | Daily files with 23 timesteps representing hourly fields                                                             |
| Computationa<br>Igrid                       | 432X331 grid points ( corresponding to NEMO T grid)<br>[12 to 20.98 degE; 39.0 to 45.88 degN]                        |
| Horizontal<br>coordinates<br>andresolution: | regular spherical coordinates, ~2km                                                                                  |
| Spectral resolution                         | 30 frequencies with logarithmic repartition from 0.05 s <sup>-1</sup> to 1.1 s <sup>-1</sup> 10 degrees in direction |

Table4: AdriaClim WW3 dataset.

#### Appendix

The AdriaClim WRF-WRFHydro system includes a double shallow water system (2D overland waterflow and 1D channel streamflow) with 600m resolution and is able to represent 145 catchments ending into Adriatic Sea, i.e. the ones with a basin area major than 70 km<sup>2</sup>. They are also shown in Figure A1.





Figure A1: The WRFHydro river catchments ending into the Adriatic Sea

A subset of 71 catchments among the 145 ones solved by WRFHydro is considered into NEMO computational grid to represent the Adriatic river release. They are listed in Table A1.

This subset follows some constraints:

- a lower threshold has been introduced and rivers with catchment area smallerthan 500 km<sup>2</sup> are not considered as they have not been calibrated and maybe unrealistic, e.g. anomalous peaks. Sile, Rijecina, Dubracina, Jadro, Uso, Rubicone rivers make exception to this rule and their mouths are embedded into NEMO domain because (i) their runoff is >10 m<sup>3</sup>s<sup>-1</sup> or (ii) they enter the Adriatic basin close each other with a total non-negligible runoff
- WRFHydro rivers which are tributaries of main networks and do not enter the sea have been excluded



- three WRFHydro catchments are lumped, thus they embed multiple catchments: Bistrica+Pavla+Kaimiti, Seman+Shkumbini, Timavo. Their outlets convey the resulting volume fluxes (red markers in Figure A2)
- Bacchiglione river is a tributary of Brenta river but WRFHydro solve the two of them as detached rivers ending directly into the sea (green markers in Figure A2)

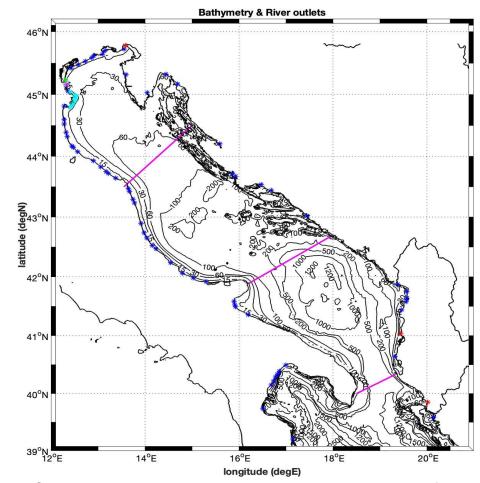



Figure A2: AdriaClim ocean model domain, bathymetry and locations of the river mouths on the computational grid. the riverine sources have been selected as a subset of the river catchments solved by AdriaClim hydrological model WRFHydro

